Chemical Physics and Quantum Chemistry


Book Description

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes. Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology Features detailed reviews written by leading international researchers Topics include: New advances in Quantum Chemical Physics; Original theory and a contemporary overview of the field of Theoretical Chemical Physics; State-of-the-Art calculations in Theoretical Chemistry




Introduction to Quantum Mechanics with Applications to Chemistry


Book Description

Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.




Neither Physics nor Chemistry


Book Description

The evolution of a discipline at the intersection of physics, chemistry, and mathematics. Quantum chemistry—a discipline that is not quite physics, not quite chemistry, and not quite applied mathematics—emerged as a field of study in the 1920s. It was referred to by such terms as mathematical chemistry, subatomic theoretical chemistry, molecular quantum mechanics, and chemical physics until the community agreed on the designation of quantum chemistry. In Neither Physics Nor Chemistry, Kostas Gavroglu and Ana Simões examine the evolution of quantum chemistry into an autonomous discipline, tracing its development from the publication of early papers in the 1920s to the dramatic changes brought about by the use of computers in the 1970s. The authors focus on the culture that emerged from the creative synthesis of the various traditions of chemistry, physics, and mathematics. They examine the concepts, practices, languages, and institutions of this new culture as well as the people who established it, from such pioneers as Walter Heitler and Fritz London, Linus Pauling, and Robert Sanderson Mulliken, to later figures including Charles Alfred Coulson, Raymond Daudel, and Per-Olov Löwdin. Throughout, the authors emphasize six themes: epistemic aspects and the dilemmas caused by multiple approaches; social issues, including academic politics, the impact of textbooks, and the forging of alliances; the contingencies that arose at every stage of the developments in quantum chemistry; the changes in the field when computers were available to perform the extraordinarily cumbersome calculations required; issues in the philosophy of science; and different styles of reasoning.




Chemical Physics


Book Description

A full understanding of modern chemistry is impossible without quantum theory. Since the advent of quantum mechanics in 1925, a number of chemical phenomena have been explained, such as electron transfer, excitation energy transfer, and other phenomena in photochemistry and photo-physics. Chemical bonds can now be accurately calculated with the help of a personal computer. Addressing students of theoretical and quantum chemistry and their counterparts in physics, Chemical Physics: Electrons and Excitations introduces chemical physics as a gateway to fields such as photo physics, solid-state physics, and electrochemistry. Offering relevant background in theory and applications, it covers the foundations of quantum mechanics and molecular structure, as well as more specialized topics such as transfer reactions and photochemistry.




Problems and Solutions in Quantum Chemistry and Physics


Book Description

Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.




Advances in the Theory of Atomic and Molecular Systems


Book Description

Advances in the Theory of Atomic and Molecular Systems, is a collection of contributions presenting recent theoretical and computational developments that provide new insights into the structure, properties, and behavior of a variety of atomic and molecular systems. This volume (subtitled: Conceptual and Computational Advances in Quantum Chemistry) focuses on electronic structure theory and its foundations. This volume is an invaluable resource for faculty, graduate students, and researchers interested in theoretical and computational chemistry and physics, physical chemistry and chemical physics, molecular spectroscopy, and related areas of science and engineering.




Advances in Quantum Chemistry


Book Description

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments




Advances in Quantum Chemistry


Book Description

Advances in Quantum Chemistry publishes articles and invited reviews by leading international researchers in quantum chemistry. Quantum chemistry deals particularly with the electronic structure of atoms, molecules, and crystalline matter and describes it in terms of electron wave patterns. It uses physical and chemical insight, sophisticated mathematics and high-speed computers to solve the wave equations and achieve its results. Advances highlights these important, interdisciplinary developments.




Pathways to Modern Chemical Physics


Book Description

In this historical volume Salvatore Califano traces the developments of ideas and theories in physical and theoretical chemistry throughout the 20th century. This seldom-told narrative provides details of topics from thermodynamics to atomic structure, radioactivity and quantum chemistry. Califano’s expertise as a physical chemist allows him to judge the historical developments from the point of view of modern chemistry. This detailed and unique historical narrative is fascinating for chemists working in the fields of physical chemistry and is also a useful resource for science historians who will enjoy access to material not previously dealt with in a coherent way.




Quantum Mechanics for Chemistry


Book Description

This textbook forms the basis for an advanced undergraduate or graduate level quantum chemistry course, and can also serve as a reference for researchers in physical chemistry and chemical physics. In addition to the standard core topics such as principles of quantum mechanics, vibrational and rotational states, hydrogen-like molecules, perturbation theory, variational principles, and molecular orbital theories, this book also covers essential theories of electronic structure calculation, the primary methods for calculating quantum dynamics, and major spectroscopic techniques for quantum measurement. Plus, topics that are overlooked in conventional textbooks such as path integral formulation, open system quantum dynamics methods, and Green’s function approaches are addressed. This book helps readers grasp the essential quantum mechanical principles and results that serve as the foundation of modern chemistry and become knowledgeable in major methods of computational chemistry and spectroscopic experiments being conducted by present-day researchers. Dirac notation is used throughout, and right balance between comprehensiveness, rigor, and readability is achieved, ensuring that the book remains accessible while providing all the relevant details. Complete with exercises, this book is ideal for a course on quantum chemistry or as a self-study resource.