Chemical Transport by Methane Ebullition in a Freshwater Lake


Book Description

Methane bubbling from lakes contributes significantly to atmospheric methane levels, and methane is second only to carbon dioxide in global warming potential. Microorganisms in aquatic sediments produce methane while consuming organic matter, and the majority of this methane is released via bubbling. Bubbles dissolve as they rise, and the fraction of original methane that dissolves versus escapes to the atmosphere is strongly influenced by bubble size. While bubble sizes are critical to methane fate, traditional methods of measuring bubbles sizes in situ are resource intensive (i.e. sonar or video cameras). In this work we design, build, and deploy a fleet of novel optical bubble size sensors capable of measuring methane bubbles in situ for long periods of time. Data from our field campaign on Upper Mystic Lake, MA illuminate spatial differences in bubble size distributions and provide an estimate of the contribution from methane bubble dissolution to dissolved methane accumulation. These results improve our understanding of processes governing the emission of this important greenhouse gas. In addition to transporting gas, bubbles effectively transport particles in water columns. This process has been used extensively in industry since the 1900s to separate chemicals of interest from bulk solutions. While bubbles also transport particulate matter in marine systems, to date very little work has focused on the possibility that methane bubbles transport particles in freshwater systems. We use laboratory and field experiments on Upper Mystic Lake to show that bubbles can transport arsenic-containing sediment particles to the surface of the lake from depths exceeding 15 m. While we estimate that arsenic transport is insignificant at the relatively modest methane bubbling levels in Upper Mystic Lake, other water bodies experience an order of magnitude more ebullition and bubbling may therefore constitute a significant contaminant flux in these systems. Furthermore, bubbles may also transport organisms (or pathogens) from the sediment to the water surface.



















The Caledonide Orogen


Book Description




Lake Kinneret


Book Description

This condensed volume summarizes updated knowledge on the warm-monomictic subtropical Lake Kinneret, including its geophysical setting, the dynamics of physical, chemical and biological processes and the major natural and anthropogenic factors that affect this unique aquatic ecosystem. This work expands on a previous monograph on Lake Kinneret published in 1978 and capitalizes on the outcome of more than 40 years of research and monitoring activities. These were intensively integrated with lake management aimed at sustainable use for supply of drinking water, tourism, recreation and fishery. The book chapters are aimed at the limnological community, aquatic ecologists, managers of aquatic ecosystems and other professionals. It presents the geographic and geological setting, the meteorology and hydrology of the region, continues with various aspects of the pelagic and the littoral systems. Finally, the last section of the book addresses lake management, demonstrating how the accumulated knowledge was applied in order to manage this important source of freshwater. The section on the pelagic system comprises the heart of the book, addressing the major physical processes, external and internal loading, the pelagic communities (from bacteria to fish), physiological processes and the major biogeochemical cycles in the lake.




Handbook of Techniques for Aquatic Sediments Sampling


Book Description

This up-to-date revision of a bestseller sets the standard for planning and implementing cost-effective sediment sampling programs. Handbook of Techniques for Aquatic Sediments Sampling, Second Edition is the only comprehensive text on procedures for sampling bottom sediments, suspended sediments, and sediment pore water. Practical guidance is also provided for sample handling and preservation to ensure accurate physicochemical analysis. No other reference source provides more tools for obtaining representative samples for evaluating potential contaminant effects on aquatic environments.




Biogenic Trace Gases


Book Description

Trace gases are those that are present in the atmosphere at relatively low concentrations. Small changes in their concentrations can have profound implications for major atmospheric fluxes, and thereore, can be used as indicators in studies of global change, global biogeochemical cycling and global warming. This new how-to guide will detail the concepts and techniques involved in the detection and measurement of trace gases, and the impact they have on ecological studies. Introductory chapters look at the role of trace gases in global cycles, while later chapters go on to consider techniques for the measurement of gases in various environments and at a range of scales. A how-to guide for measuring atmospheric trace gases. Techniques described are of value in addressing current concerns over global climate change.