Chemical Vapor Transport Reactions


Book Description

This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others. Aspects of transport from intermetallic phases, the stability of gas particles, thermodynamic data, modeling software and laboratory techniques are also covered. Selected experiments using chemical vapor transport reactions round out the work, making this book a useful reference for researchers and instructors in solid state and inorganic chemistry.




Chemical Vapor Transport Reactions


Book Description

This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others.




Chemical Transport Reactions


Book Description

Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and crystalline substances with homogeneous regions. The text then elaborates on the reaction process in the gas phase and chemical transport processes as an aid in preparative chemistry. The manuscript ponders on the use of transport experiments in the determination of thermodynamic values, including determination of quantities transported in the diffusion tube, test of reversibility, and inversion of transport direction. The book is a vital reference for readers interested in chemical transport reactions.




Advanced Topics on Crystal Growth


Book Description

Crystal growth is the key step of a great number of very important applications. The development of new devices and products, from the traditional microelectronic industry to pharmaceutical industry and many others, depends on crystallization processes. The objective of this book is not to cover all areas of crystal growth but just present, as specified in the title, important selected topics, as applied to organic and inorganic systems. All authors have been selected for being key researchers in their field of specialization, working in important universities and research labs around the world. The first section is mainly devoted to biological systems and covers topics like proteins, bone and ice crystallization. The second section brings some applications to inorganic systems and describes more general growth techniques like chemical vapor crystallization and electrodeposition. This book is mostly recommended for students working in the field of crystal growth and for scientists and engineers in the fields of crystalline materials, crystal engineering and the industrial applications of crystallization processes.




Principles of Chemical Vapor Deposition


Book Description

Principles of Chemical Vapor Deposition provides a simple introduction to heat and mass transfer, surface and gas phase chemistry, and plasma discharge characteristics. In addition, the book includes discussions of practical films and reactors to help in the development of better processes and equipment. This book will assist workers new to chemical vapor deposition (CVD) to understand CVD reactors and processes and to comprehend and exploit the literature in the field. The book reviews several disparate fields with which many researchers may have only a passing acquaintance, such as heat and mass transfer, discharge physics, and surface chemistry, focusing on key issues relevant to CVD. The book also examines examples of realistic industrial reactors and processes with simplified analysis to demonstrate how to apply the principles to practical situations. The book does not attempt to exhaustively survey the literature or to intimidate the reader with irrelevant mathematical apparatus. This book is as simple as possible while still retaining the essential physics and chemistry. The book is generously illustrated to assist the reader in forming the mental images which are the basis of understanding.




Chemically Reacting Flow


Book Description

Complex chemically reacting flow simulations are commonly employed to develop quantitative understanding and to optimize reaction conditions in systems such as combustion, catalysis, chemical vapor deposition, and other chemical processes. Although reaction conditions, geometries, and fluid flow can vary widely among the applications of chemically reacting flows, all applications share a need for accurate, detailed descriptions of the chemical kinetics occurring in the gas-phase or on reactive surfaces. Chemically Reacting Flow: Theory and Practice combines fundamental concepts in fluid mechanics and physical chemistry, assisting the student and practicing researcher in developing analytical and simulation skills that are useful and extendable for solving real-world engineering problems. The first several chapters introduce transport processes, primarily from a fluid-mechanics point of view, incorporating computational simulation from the outset. The middle section targets physical chemistry topics that are required to develop chemically reacting flow simulations, such as chemical thermodynamics, molecular transport, chemical rate theories, and reaction mechanisms. The final chapters deal with complex chemically reacting flow simulations, emphasizing combustion and materials processing. Among other features, Chemically Reacting Flow: Theory and Practice: -Advances a comprehensive approach to interweaving the fundamentals of chemical kinetics and fluid mechanics -Embraces computational simulation, equipping the reader with effective, practical tools for solving real-world problems -Emphasizes physical fundamentals, enabling the analyst to understand how reacting flow simulations achieve their results -Provides a valuable resource for scientists and engineers who use Chemkin or similar software Computer simulation of reactive systems is highly effective in the development, enhancement, and optimization of chemical processes. Chemically Reacting Flow helps prepare both students and professionals to take practical advantage of this powerful capability.




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.




Luminous Chemical Vapor Deposition and Interface Engineering


Book Description

Providing in-depth coverage of the technologies and various approaches, Luminous Chemical Vapor Deposition and Interface Engineering showcases the development and utilization of LCVD procedures in industrial scale applications. It offers a wide range of examples, case studies, and recommendations for clear understanding of this innovative science.




Guidelines for Consequence Analysis of Chemical Releases


Book Description

This Guidelines book provides technical information on how to conduct a consequence analysis to satisfy your company's needs and the EPA rules. It covers quantifying the size of a release, dispersion of vapor clouds to an endpoint concentration, outcomes for various types of explosions and fires, and the effect of the release on people and structures. Special Details: Includes CD-ROM with example problems worked using Excel and Quattro Pro. For use with Windows 95, 98, and NT.




A Basic Introduction to Pollutant Fate and Transport


Book Description

A uniquely accessible text on environmental modeling designed for both students and industry personnel Pollutant fate and modeling are becoming increasingly important in both regulatory and scientific areas. However,the complexity of the software and models often act as an inhibitor to the advancement of water quality science. A Basic Introduction to Pollutant Fate and Transport fills the need for a basic instructional tool for students and environmental professionals who lack the rigorous mathematical background necessary to derive the governing fate and transport equations. Taking a refreshingly simple approach to the subject that requires only a basic knowledge of algebra and first-year college chemistry, the book presents and integrates all of the aspects of fate and transport, including chemistry, modeling, risk assessment, and relevant environmental legislation; approaching each topic first conceptually before introducing the math necessary to model it. The first half of the book is dedicated to the chemistry and physics behind the fate and transport models, while the second half teaches and reinforces the logical concepts underlying fate and transport modeling. This better prepares students for support jobs in the environmental arena surrounding chemical industry and Superfund sites. Contributing to the book's ease of use are: An extremely user-friendly software program, Fate, which uses basic models to predict the fate and transport of pollutants in lakes, rivers, groundwater, and atmospheric systems The use of "canned" models to evaluate the importance of model parameters and sensitivity analysis A wealth of easy-to-understand examples and problems A chapter on environmental legislation in the United States and Europe A set of lab exercises, as well as a downloadable set of teaching aids A much-needed basic text for contemporary hydrology or environmental chemistry courses and support courses forthe environmental industry, this is a valuable desk reference for educators and industry professionals.