Electropolymerization


Book Description

Providing extensive coverage, including conducting, insulating and electroactive films, this handbook and ready reference deals with introductory topics and fundamentals as well as advanced insights. Clearly structured, in the first part of the book readers learn the fundamentals of electropolymerizatoin for all important types of polymers, mechanisms of film formation and functionalization, while the second part covers a wide range of applications in biochemistry, analytics, photovoltaics, energy and the environment as well as actuators.




Square-Wave Voltammetry


Book Description

In a real tour-de-force of scientific publishing, three distinguished experts here systematically deliver both the underlying theory and the practical guidance needed to effectively apply square-wave voltammetry techniques. Square-wave voltammetry is a technique used in analytical applications and fundamental studies of electrode mechanisms. In order to take full advantage of this technique, a solid understanding of signal generation, thermodynamics, and kinetics is essential. Not only does this book cover all the necessary background and basics, but it also offers an appendix on mathematical modeling plus a chapter on electrode mechanisms that briefly reviews the numerical formulae needed to simulate experiments using popular software tools.




Graphene-Based Electrochemical Sensors for Biomolecules


Book Description

Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail. - Covers the importance of detecting biomolecules and the application of graphene and its nanocomposite materials in the detection of a wide variety of bioanalytes - Presents easily understood fundamentals of electrochemical sensing systems and the role of graphene-based nanocomposite materials in research and development




Chemically Modified Electrodes


Book Description

With contributions from an international group of expert authors, this book includes the latest trends in tailoring interfacial properties electrochemically. The chapters cover various organic and inorganic compounds, with applications ranging from electrochemistry to nanotechnology and biology. Of interest to physical, surface and electrochemists, materials scientists and physicists.




Handbook of Electrochemistry


Book Description

Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)




Applications of the Voltammetry


Book Description

The present book Applications of Voltammetry is a collection of six chapters, organized in two sections. The first book section is dedicated to the application of mathematical methods, such as multivariate calibration coupled with voltammetric data and numeric simulation to solve quantitative electroanalytical problems. The second book section is devoted to the electron transfer kinetic studies and electroanalytical applications of the voltammetry, such as interfacial electron transfer of the haem group in human haemoglobin molecules, physisorbed on glass-/tin-doped indium oxide substrates, analysis of dyes and metal ions in trace concentrations and characterization of the antioxidant properties of wine and wine products, using a variety of voltammetric techniques and electrodes. The most recent trends and advances in voltammetry are professionally commented.




Electroanalytical Methods


Book Description

Researchers and professionals will find a hands-on guide to successful experiments and applications of modern electroanalytical techniques here. The new edition has been completely revised and extended by a chapter on quartz-crystal microbalances. The book is written for chemists, biochemists, environmental and materials scientists, and physicists. A basic knowledge of chemistry and physics is sufficient for understanding the described methods. Electroanalytical techniques are particularly useful for qualitative and quantitative analysis of chemical, biochemical, and physical systems. Experienced experts provide the necessary theoretical background of electrochemistry and thoroughly describe frequently used measuring techniques. Special attention is given to experimental details and data evaluation.




Nanomaterials for Drug Delivery and Therapy


Book Description

Nanomaterials for Drug Delivery and Therapy presents recent advances in the field of nanobiomaterials and their important applications in drug delivery, therapy and engineering. The book offers pharmaceutical perspectives, exploring the development of nanobiomaterials and their interaction with the human body. Chapters show how nanomaterials are used in treatments, including neurology, dentistry and cancer therapy. Authored by a range of contributors from global institutions, this book offers a broad, international perspective on how nanotechnology-based advances are leading to novel drug delivery and treatment solutions. It is a valuable research resource that will help both practicing medics and researchers in pharmaceutical science and nanomedicine learn more on how nanotechnology is improving treatments. - Assesses the opportunities and challenges of nanotechnology-based drug delivery systems - Explores how nanotechnology is being used to create more efficient drug delivery systems - Discusses which nanomaterials make the best drug carriers




Polymeric Carbons


Book Description

This 1976 book brings together data from the authors' work to describe the manufacture of polymetric carbons. It provides a description of physical, mechanical and chemical properties which are related as closely as possible to the revealed structure. Emphasis is placed on the more interesting aspects.




Chemically Modified Carbon Nanotubes for Commercial Applications


Book Description

Discover the go-to handbook for developers and application-oriented researchers who use carbon nanotubes in real products Carbon nanotubes have held much interest for researchers since their discovery in 1991. Due to their low mass density, large aspect ratio, and unique physical, chemical, and electronic properties, they provide a fertile ground for innovation in nanoscale applications. The development of chemical modifications that can enhance the poor dispersion of carbon nanotubes in solvents and improve interactions with other materials have enabled extensive industrial applications in a variety of fields. As the chemistry of carbon nanotubes and their functionalization becomes better understood, Chemically Modified Carbon Nanotubes for Commercial Applications presents the most recent developments of chemically modified carbon nanotubes and emphasizes the broad appeal for commercial purposes along many avenues of interest. The book reviews their already realized and prospective applications in fields such as electronics, photonics, separation science, food packaging, environmental monitoring and protecting, sensing technology, and biomedicine. By focusing on their commercialization prospects, this resource offers a unique approach to a significant and cutting-edge discipline. Chemically Modified Carbon Nanotubes for Commercial Applications readers will also find: Case studies that emphasize the information presented in each chapter Each chapter includes important websites and suggested reading materials Discussion of current applications of the relevant methodologies in every chapter A look at future perspectives in each application area to highlight the scope for next steps within the industry Chemically Modified Carbon Nanotubes for Commercial Applications is a valuable reference for material scientists, chemists (especially those focused on environmental concerns), and chemical and materials engineering scientists working in R&D and academia who want to learn more about chemically modified carbon nanotubes for various scalable commercial applications. It is also a useful resource for a broad audience: anyone interested in the fields of nanomaterials, nanoadsorbents, nanomedicine, bioinspired nanomaterials, nanotechnology, nanodevices, nanocomposites, biomedical application of nanomaterials, nano-engineering, and high energy applications.