Chemistry and Applications of Polyphosphazenes


Book Description

Polyphosphazenes are polymers containing nitrogen as part of their backbone; they are commonly used in O-rings, pipelines, and seals in oil, fuel delivery, and storage systems. New polyphosphazene derivatives have been proven biocompatible, biodegradable, and bioactive, and some of them are being investigated for possible medical applications. Harry Allcock’s Chemistry and Applications of Polyphosphazenes provides the only published compilation of material on polyphosphazenes, detailing synthetic methodologies and physical properties for each substance. Allcock explains the critical relationships between structure and properties, aiding the practicing researcher in the design of polyphosphazenes with specific applications. Professionals and students in polymer science, engineering, and industries such as rubbers and plastics will find Chemistry and Applications of Polyphosphazenes to be an invaluable text.




Polyphosphazenes for Biomedical Applications


Book Description

Brings together, analyzes, and contextualizes the latest findings and practical applications Polyphosphazenes, an emerging class of polymers, include macromolecules, which have been proven to be biocompatible, biodegradable, and bioactive. Their unprecedented structural diversity and unique properties make them suitable as vaccine adjuvants, microencapsulating agents, biodegradable materials, scaffolds for tissue engineering, biocompatible coatings, and carriers for gene delivery. Polyphosphazenes for Biomedical Applications offers a thorough review of polyphosphazene research findings in the life sciences, chemistry, and chemical engineering. It emphasizes biomedical applications as well as recent advances in polyphosphazene development such as high-throughput discovery and the latest controlled methods of synthesis. The book brings together, analyzes, and contextualizes a wealth of knowledge that previously could only be found scattered throughout the scientific literature. Following two introductory chapters, the book reviews: Vaccine delivery and immunomodulation Biomaterials Drug delivery systems Biodetection Well-defined polyphosphazenes: synthetic aspects and novel molecular architectures All the chapters have been written by leading researchers in the field. Editor Alexander Andrianov, who has led the effort to commercialize polyphosphazenes for biomedical applications, has carefully reviewed and edited all chapters to ensure readability, accuracy, and thoroughness. Polyphosphazenes for Biomedical Applications is not only intended for researchers working in polyphosphazene chemistry, but also for all researchers seeking solutions to problems arising in the areas of biomaterials, drug delivery systems, and controlled release formulations.




Phosphorus-Based Polymers


Book Description

A comprehensive overview of the synthesis of different phosphorus-containing polymers and their uses in biomedical, environmental and energy applications.




Polymers for Tissue Engineering


Book Description

The articles included in this text highlight the important advances in polymer science that impact tissue engineering. The breadth of polymer science is well represented with the relevance of both polymer chemistry and morphology emphasized in terms of cell and tissue response.




Organic Polymers


Book Description

This book, Organic Polymers, covers aspects that are of immediate concern to a new entrant to the field of polymers. Taken as a whole, these eight chapters aim to help the readers easily assimilate other specialized and exhaustive treatises on the subject. Topics dealing with the chemistry and technology of polymers are presented in a careful and logical manner so as to provide an easy and enjoyable read. Several examples and analogies are included so to make the main concepts easy to follow and tables and figures are included so that the book can serve, to a limited extent, as a hand book dealing with polysaccharides with different parameters. This book is meant for students studying polysaccharides and those working on graft copolymers and other allied polymer industries but without a formal educational background in organic polymers.




Smart Inorganic Polymers


Book Description

Provides complete and undiluted knowledge on making inorganic polymers functional. This comprehensive book reflects the state of the art in the field of inorganic polymers, based on research conducted by a number of internationally leading research groups working in this area. It covers the synthesis aspects of synthetic inorganic polymers and looks at multiple inorganic monomers as building blocks, which exhibit unprecedented electronic, redox, photo-emissive, magnetic, self-healing and catalytic properties. It also looks at the applications of inorganic polymers in areas such as optoelectronics, energy storage, industrial chemistry, and biology. Beginning with an overview of the use of smart inorganic polymers in daily life, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences goes on to study the synthesis, properties, and applications of polymers incorporating different heteroelements such as boron, phosphorus, silicon, germanium, and tin. The book also examines inorganic polymers in flame-retardants, as functional materials, and in biology. An excellent addition to the polymer scientists' and synthetic chemists' toolbox Summarizes the state of the art on how to make and use functional inorganic polymers, from synthesis to applications Edited by the coordinator of a highly funded European community research program (COST action) that focuses specifically on the exploration of inorganic polymers Features contributions from top experts in the field Aimed at academics and industrial researchers in this field, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences will also benefit scientists who want to get a better overview on the state-of-the-art of this rapidly advancing area.




Biomedical Applications of Polymeric Materials and Composites


Book Description

With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.




Phosphazenes


Book Description

The main aim of this book is to provide a complete picture of current research on phosphazene compounds carried out around the world. The book opens with a general introduction, then moves on to cover synthetic aspects of phosphazene polymers, their characterization in solution and from the theoretical, thermal, and mechanical points of view; application aspects of poly(organophosphazenes); and the synthesis, characterization, and practical utilization of cyclophosphazenes. There is particular focus on the use of cyclophosphazenes as hydraulic fluids and additives, as cores for star polymers or dendrimers, and as starting substrates for supramolecular chemistry and nanostructured materials. The spectroscopic characterization of these compounds by NMR and Raman techniques is also discussed. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).




Natural and Synthetic Biomedical Polymers


Book Description

Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future




Synthesis of Inorganic Materials


Book Description

Introduces readers to the field of inorganic materials, while emphasizing synthesis and modification techniques Written from the chemist's point of view, this newly updated and completely revised fourth edition of Synthesis of Inorganic Materials provides a thorough and pedagogical introduction to the exciting and fast developing field of inorganic materials and features all of the latest developments. New to this edition is a chapter on self-assembly and self-organization, as well as all-new content on: demixing of glasses, non-classical crystallization, precursor chemistry, citrate-gel and Pechini liquid mix methods, ice-templating, and materials with hierarchical porosity. Synthesis of Inorganic Materials, 4th Edition features chapters covering: solid-state reactions; formation of solids from the gas phase; formation of solids from solutions and melts; preparation and modification of inorganic polymers; self-assembly and self-organization; templated materials; and nanostructured materials. There is also an extensive glossary to help bridge the gap between chemistry, solid state physics and materials science. In addition, a selection of books and review articles is provided at the end of each chapter as a starting point for more in-depth reading. -Gives the students a thorough overview of the fundamentals and the wide variety of different inorganic materials with applications in research as well as in industry -Every chapter is updated with new content -Includes a completely new chapter covering self-assembly and self-organization -Written by well-known and experienced authors who follow an intuitive and pedagogical approach Synthesis of Inorganic Materials, 4th Edition is a valuable resource for advanced undergraduate students as well as masters and graduate students of inorganic chemistry and materials science.