Chemistry for Biomass Utilization


Book Description

Much interest has been directed to the versatile possibilities of using lignocellulosic biomass resources (i.e., “renewable raw materials”) for the full-scale production of various chemicals and other bioproducts together with solid, liquid, and gaseous fuels. Introduces modern aspects and various technologies of lignocellulosic biomass conversion for producing chemicals, biofuels, and other products in a reader friendly way. Starting with fundamentals of biorefi nery, the author further describes chemical, biochemical, and thermal conversion approaches. In addition, the properties and biorefining principles of non-wood biomass feedstock




Chemicals from Biomass


Book Description

Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into faci




Fuels and Chemicals from Biomass


Book Description

Written for a wide variety of biotechnologists, this book provides a major review of the state-of-the-art in bioethanol production technologies, enzymatic biomass conversion, and biodiesel. It also provides a detailed explanation of a breakthrough in photosynthetic water splitting which could result in a doubling of the efficiency of solar energy conversion by green plants. The book covers production of lactic acid, succinic acid, 1,3-propanediol, 2,3-butanediol, and polyhydroxybutyrate and xylitol. It also includes a chapter on synthesis-gas fermentation.




Biomass Utilization


Book Description

This proceedings volume represents the culmination of nearly three years of planning, organizing and carrying out of a NATO Ad vanced Study Institute on Biomass Utilization. The effort was initi ated by Dr. Harry Sobel, then Editor of Biosources Digest, and a steering committee representing the many disciplines that this field brings together. . When the fiscal and logistical details of the original plan could not be worked out, the idea was temporarily suspended. In the spring of 1982, the Renewable Materials Institute of the State University of New York at the College of Environmental Science and Forestry in Syracuse, New York revived the plan. A number of modifications had to be made, including the venue which was changed from the U.S.A. to Portugal. Additional funding beyond the basic support provided by the Scientific Affairs Division of NATO had to be obtained. Ul timately there were supplementary grants from the Foundation for Microbiology and the Anne S. Richardson Fund to assist student participants. The New York State College of Forestry Foundation, Inc. provided major support through the Renewable Ma terials Institute. The ASI was held in Alcabideche, Portugal from September 26 to October 9, 1982. Eighty participants including fifteen principal lecturers were assembled at the Hotel Sintra Estoril for the program that was organized as a comprehensive course on biomass utilization. The main lectures were supplemented by relevant short papers offered by the participants.




Biomass Sugars for Non-Fuel Applications


Book Description

Biomass-derived sugars provide a rich, renewable feedstock for a diverse range of chemicals, making them a promising and feasible source for the sustainable manufacture of a variety of valuable products. Exploring green sugar-based technologies beyond their applications in fuels, this book provides an overview of sugar-based technologies, describing their challenges and opportunities. It covers transformations of sugars into green chemicals in pharmaceuticals, biodegradable polymers and surfactants. A special chapter is dedicated to the conversion of biomass into sugars, which is a crucial step in the sustainable utilization of sugars. The book is a valuable resource for chemists and chemical engineers working to develop greener synthetic routes to chemicals and pharmaceuticals.




Carbon Dioxide as Chemical Feedstock


Book Description

Filling the need for an up-to-date handbook, this ready reference closely investigates the use of CO2 for ureas, enzymes, carbamates, and isocyanates, as well as its use as a solvent, in electrochemistry, biomass utilization and much more. Edited by an internationally renowned and experienced researcher, this is a comprehensive source for every synthetic chemist in academia and industry.




Biomass for Renewable Energy, Fuels, and Chemicals


Book Description

Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience




The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals


Book Description

The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of: - Catalytic pyrolysis of lignocellulosic biomass - Hybrid biogasoline by co-processing in FCC units - Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process) - Steam reforming of bio-oils to hydrogen With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students. - Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes - Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process - Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature




Biofuels and Bioenergy


Book Description

The newest addition to the Green Chemistry and Chemical Engineering series from CRC Press, Biofuels and Bioenergy: Processes and Technologies provides a succinct but in-depth introduction to methods of development and use of biofuels and bioenergy. The book illustrates their great appeal as tools for solving the economic and environmental challenges associated with achieving energy sustainability and independence through the use of clean, renewable alternative energy. Taking a process engineering approach rooted in the fuel and petrochemical fields, this book masterfully integrates coverage of current conventional processes and emerging techniques. Topics covered include: Characterization and analysis of biofuels Process economics Chemistry of process conversion Process engineering and design and associated environmental technologies Energy balances and efficiencies Reactor designs and process configurations Energy materials and process equipment Integration with other conventional fossil fuel processes Byproduct utilization Governmental regulations and policies and global trends After an overview of the subject, the book discusses crop oils, biodiesel, and algae fuels. It examines ethanol from corn and from lignocelluloses and then explores fast pyrolysis and gasification of biomass. Discussing the future of biofuel production, it also describes the conversion of waste to biofuels, bioproducts, and bioenergy and concludes with a discussion of mixed feedstock. Written for readers with college-level backgrounds in chemistry, biology, physics, and engineering, this reference explores the science and technology involved in developing biofuels and bioenergy. It addresses the application of these and other disciplines, covering key issues of special interest to fuel process engineers, fuel scientists, and energy technologists, among others.




Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value


Book Description

Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value examines the use of biomass as a raw material, including terrestrial and aquatic sources to obtain extracts (e.g. polyphenols), biofuels, and/or intermediates (furfural, levulinates) through chemical and biochemical processes. The book also covers the production of natural polymers using biomass and the biosynthetic process, cellulose modified by biochemical and chemical methods, and other biochemicals that can be used in the synthesis of various pharmaceuticals. Featuring case studies, discussions of sustainability, and nanomedical, biomedical, and pharmaceutical applications, Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value is a crucial resource for biotechnologists, biochemical engineers, biochemists, microbiologists, and research students in these areas, as well as entrepreneurs, policy makers, stakeholders, and politicians. - Reviews biomass resources and compounds with bioactive properties - Describes chemical and biochemical processes for creating biofuels from biomass - Outlines production of polysaccharides and cellulose derivatives - Features applications in the fields of medicine and pharmacy