Chip Design for Submicron VLSI


Book Description

This book teaches the principles of physical design, layout, and simulation of CMOS integrated circuits. It is written around a very powerful CAD program called Microwind that is available on the accompanying CD-ROM. Featuring a friendly interface, Microwind is both educational and useful for designing CMOS chips.







SoC Physical Design


Book Description

SoC Physical Design is a comprehensive practical guide for VLSI designers that thoroughly examines and explains the practical physical design flow of system on chip (SoC). The book covers the rationale behind making design decisions on power, performance, and area (PPA) goals for SoC and explains the required design environment algorithms, design flows, constraints, handoff procedures, and design infrastructure requirements in achieving them. The book reveals challenges likely to be faced at each design process and ways to address them in practical design environments. Advanced topics on 3D ICs, EDA trends, and SOC trends are discussed in later chapters. Coverage also includes advanced physical design techniques followed for deep submicron SOC designs. The book provides aspiring VLSI designers, practicing design engineers, and electrical engineering students with a solid background on the complex physical design requirements of SoCs which are required to contribute effectively in design roles.




Low Power Design in Deep Submicron Electronics


Book Description

Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium




Modern VLSI Design


Book Description

For Electrical Engineering and Computer Engineering courses that cover the design and technology of very large scale integrated (VLSI) circuits and systems. May also be used as a VLSI reference for professional VLSI design engineers, VLSI design managers, and VLSI CAD engineers. Modern VSLI Design provides a comprehensive “bottom-up” guide to the design of VSLI systems, from the physical design of circuits through system architecture with focus on the latest solution for system-on-chip (SOC) design. Because VSLI system designers face a variety of challenges that include high performance, interconnect delays, low power, low cost, and fast design turnaround time, successful designers must understand the entire design process. The Third Edition also provides a much more thorough discussion of hardware description languages, with introduction to both Verilog and VHDL. For that reason, this book presents the entire VSLI design process in a single volume.




A Practical Approach to VLSI System on Chip (SoC) Design


Book Description

This book provides a comprehensive overview of the VLSI design process. It covers end-to-end system on chip (SoC) design, including design methodology, the design environment, tools, choice of design components, handoff procedures, and design infrastructure needs. The book also offers critical guidance on the latest UPF-based low power design flow issues for deep submicron SOC designs, which will prepare readers for the challenges of working at the nanotechnology scale. This practical guide will provide engineers who aspire to be VLSI designers with the techniques and tools of the trade, and will also be a valuable professional reference for those already working in VLSI design and verification with a focus on complex SoC designs. A comprehensive practical guide for VLSI designers; Covers end-to-end VLSI SoC design flow; Includes source code, case studies, and application examples.




VLSI Memory Chip Design


Book Description

A systematic description of microelectronic device design. Topics range from the basics to low-power and ultralow-voltage designs, subthreshold current reduction, memory subsystem designs for modern DRAMs, and various on-chip supply-voltage conversion techniques. It also covers process and device issues as well as design issues relating to systems, circuits, devices and processes, such as signal-to-noise and redundancy.




Handbook of VLSI Chip Design and Expert Systems


Book Description

Handbook of VLSI Chip Design and Expert Systems provides information pertinent to the fundamental aspects of expert systems, which provides a knowledge-based approach to problem solving. This book discusses the use of expert systems in every possible subtask of VLSI chip design as well as in the interrelations between the subtasks. Organized into nine chapters, this book begins with an overview of design automation, which can be identified as Computer-Aided Design of Circuits and Systems (CADCAS). This text then presents the progress in artificial intelligence, with emphasis on expert systems. Other chapters consider the impact of design automation, which exploits the basic capabilities of computers to perform complex calculations and to handle huge amounts of data with a high speed and accuracy. This book discusses as well the characterization of microprocessors. The final chapter deals with interactive I/O devices. This book is a valuable resource for system design experts, circuit analysts and designers, logic designers, device engineers, technologists, and application-specific designers.




Modern VLSI Design


Book Description

Techniques for the latest deep-submicron, mega-chip projects. The start-to-finish, state-of-the-art guide to VLSI design. VLSI design is system design. To build high-performance, cost-effective ICs, you must understand all aspects of digital design, from planning and layout to fabrication and packaging. Modern VLSI Design, Second Edition: Systems on Silicon is a comprehensive, "bottom-up" guide to the entire VLSI design process. Emphasizing CMOS, it focuses on the crucial challenges of deep-submicron VLSI design. Coverage includes: Devices and layouts: transistor structures and characteristics, wires, vias, parasitics, design rules, layout design and tools. Logic gates and combinational logic networks, including interconnect delay and crosstalk. Sequential machines and sequential system design. Subsystem design, including high-speed adders, multipliers, ROM, SRAM, SRAM, PGAs and PLAs. Floorplanning, clock distribution and power distribution. Architecture design, including VHDL, scheduling, function unit selection, power and testability. Chip design methodologies, CAD systems and algorithms. Modern VLSI Design, Second Edition: Systems on Silicon offers a complete yet accessible introduction to crosstalk models and optimization. It covers minimizing power consumption at every level of abstraction, from circuits to architecture and new insights into design-for-testability techniques that maximize quality despite quicker turnarounds. It also presents detailed coverage of the algorithms underlying contemporary VLSI computer-aided design software, so designers can understand their tools nomatter which ones they choose. Whether you're a practicing professional or advanced student, this is the sophisticated VLSI design knowledge you need to succeed with tomorrow's most challenging projects.




VLSI Circuit Design Methodology Demystified


Book Description

This book was written to arm engineers qualified and knowledgeable in the area of VLSI circuits with the essential knowledge they need to get into this exciting field and to help those already in it achieve a higher level of proficiency. Few people truly understand how a large chip is developed, but an understanding of the whole process is necessary to appreciate the importance of each part of it and to understand the process from concept to silicon. It will teach readers how to become better engineers through a practical approach of diagnosing and attacking real-world problems.