Chiral Ferrocenes in Asymmetric Catalysis


Book Description

This book meets the long-felt need for a reference on ferrocenes with the focus on catalysis. It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral materials as well as drug intermediates synthesized from them. Written by the "who's who" of ferrocene catalysis, this is a guide to the design of new ferrocene ligands and synthesis of chiral synthetic intermediates, and will thus be useful for organic, catalytic and synthetic chemists working in academia, industrial research or process development.




Ferrocenes


Book Description

Ferrocene—the prototypical metallocene—is a fascinating molecule. Even though it was first discovered over fifty years ago, research into ferrocene-containing compounds continues apace, largely stimulated by their successful applications in catalysis, materials science and bioorganometallic chemistry. Ferrocene derivatives are now recognised as useful starting materials for the preparation of new organometallic complexes and functional materials, efficient catalyst components, as well as redox-active modifiers to biomolecules. Ferrocenes: Ligands, Materials and Biomolecules provides the reader with a background overview and describes recent advances in the development and application of ferrocene compounds, including: synthesis and catalytic utilisation of chiral and non-chiral ferrocene ligands ferrocene-based sensors electrooptical materials ferrocene polymers liquid-crystalline materials crystal engineering with ferrocene compounds the bioorganometallic chemistry of ferrocene Ferrocenes: Ligands, Materials and Biomolecules is an essential guide for anyone working in the fields of organometallic synthesis and catalysis, materials science and bioorganometallic chemistry.




Modern Arylation Methods


Book Description

Today, arylation methods are belonging to the most important reaction types in organic synthesis. Lutz Ackermann, a young and ambitious professor has gathered a number of top international authors to present the first comprehensive book on the topic. Starting from a historical review, the book covers hot topics like Palladium-catalyzed arylation of N-H and alpha-C-H-acidic Bonds, Copper-catalyzed arylation of N-H and O-H Bonds, direct arylation reactions, carbanion aromatic synthesis, arylation reactions of alkenes, alkynes and much more. This compact source of high quality information is indispensable to synthetic chemists and those working in the pharmaceutical and chemical industry.




C-H Activation for Asymmetric Synthesis


Book Description

Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.




Advances in Asymmetric Synthesis


Book Description

Advances in Asymmetric Synthesis




C-H Activation for Asymmetric Synthesis


Book Description

Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.




Ferrocenes


Book Description

With applications ranging from asymmetric catalysis to magnetic materials, ferrocene is one of the most versatile building blocks in synthesis. This book captures the multidisciplinary nature of ferrocene research, including topics such as ferrocene-containing polymers, ferrocene-containing thermotropic liquid crystals, chiral ferrocene derivatives, and ferrocene-containing charge-transfer materials. In addition, the reader will find * valuable information for planning syntheses * over 70 tables, making relevant data available at a glance * carefully selected references, providing an easy access to the primary literature Up-to-date, and written by leading international experts in the field, among them R. Deschenaux, C. D. Hall, Y. Butsugan, and R. Herrmann, this book is a welcome source of in-depth information for graduate students and professionals in organic, organometallic, and polymer chemistry, as well as in materials science.




Chiral Reagents for Asymmetric Synthesis


Book Description

Derived from the renowned, Encyclopedia of Reagents for Organic Synthesis (EROS), the related editors have created a new handbook which focuses on chiral reagents used in asymmetric synthesis and is designed for the chemist at the bench. This new handbook follows the same format as the Encyclopedia, including an introduction and an alphabetical arrangement of the reagents. As chiral reagents are the key for the successful asymmetric synthesis, choosing the right reagents is essential, in this handy reference the editors give details on how to prepare, store and use the reagents as well as providing key reactions to demonstrate where reagents have been successfully used. Comprehensive information on 226 reagents Covers 64 reagents which were not included in EROS All information in one easy to use volume – at an affordable price All reagents included will be added to e-EROS – please visit the site where you can gain access to over 50,000 reactions and 3,800 of the most frequently consulted reagents. Visit: www.interscience.wiley.com/eros




Phosphorus(III)Ligands in Homogeneous Catalysis


Book Description

Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.




Stereoselective Synthesis of Drugs and Natural Products


Book Description

Brings together the best tested and proven stereoselective synthetic methods Both the chemical and pharmaceutical industries are increasingly dependent on stereoselective synthetic methods and strategies for the generation of new chiral drugs and natural products that offer specific 3-D structures. With the publication of Stereoselective Synthesis of Drugs and Natural Products, researchers can turn to this comprehensive two-volume work to guide them through all the core methods for the synthesis of chiral drugs and natural products. Stereoselective Synthesis of Drugs and Natural Products features contributions from an international team of synthetic chemists and pharmaceutical and natural product researchers. These authors have reviewed the tremendous body of literature in the field in order to compile a set of reliable, tested, and proven methods alongside step-by-step guidance. This practical resource not only explores synthetic methodology, but also reaction mechanisms and applications in medicinal chemistry and drug discovery. The publication begins with an introductory chapter covering general principles and methodologies, nomenclature, and strategies of stereoselective synthesis. Next, it is divided into three parts: Part One: General Methods and Strategies Part Two: Stereoselective Synthesis by Bond Formation including C-C bond formation C-H bond formation C-O bond formation C-N bond formation Other C-heteroatom formation and other bond formation Part Three: Methods of Analysis and Chiral Separation References in every chapter serve as a gateway to the literature in the field. With this publication as their guide, chemists involved in the stereoselective synthesis of drugs and natural products now have a single, expertly edited source for all the methods they need.