Chlorine and Hydrogen Chloride


Book Description

1 INTRODUCTION. 2 SOURCERS OF CHLORINE AND HYDROGEN CHLORIDE. 3 CONSUMPTION OF CHLORINE AND HYDROGEN CHLORIDE. 4 ATMOSPHERIC CHEMISTRY OF CHLORINE COMPOUNDS. 5 EFFECTS OF CHLORINE AND HYDROGEN CHLORIDE ON MAN AND ANIMALS. 6 EFFECTS OF CHLORINE AND HYDROGEN CHLORIDE ON VEGETATION. 7 PROPERTY DAMAGE AND PUBLIC NUISANCE. 8 SAFETY IN USE AND HANDLING OF CHLORINE AND ANHYDROUS HYDROGEN CHLORIDE.




Chemical Demonstrations


Book Description

Describes and gives instructions for lecture demonstrations covering acids and bases and liquids, solutions, and colloids




Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants


Book Description

U.S. Navy personnel who work on submarines are in an enclosed and isolated environment for days or weeks at a time when at sea. Unlike a typical work environment, they are potentially exposed to air contaminants 24 hours a day. To protect workers from potential adverse health effects due to those conditions, the U.S. Navy has established exposure guidance levels for a number of contaminants. The Navy asked a subcommittee of the National Research Council (NRC) to review, and develop when necessary, exposure guidance levels for specific contaminants. This volume, the third in a series, recommends 1-hour and 24-hour emergency exposure guidance levels (EEGLs) and 90-day continuous exposure guidance levels (CEGLs) for acetaldehyde, hydrogen chloride, hydrogen fluoride, hydrogen sulfide, and propylene glycol dinitrate.




Active Nitrogen


Book Description

Physical Chemistry, A Series of Monographs: Active Nitrogen presents the methods by which active nitrogen may be produced. This book is composed of five chapters that evaluate the energy content, molecular spectrum, and the emission of active nitrogen. Some of the topics covered in the book are the summary of light-emitting systems of active nitrogen; analysis of Long-Lived Lewis-Rayleigh Afterglow theory and Ionic theory of Mitra; reactions followed by induced light emission; and characteristics of homogeneous recombination. Other chapters deal with the analysis of metastable molecule theories and the mechanisms for reactions of active nitrogen involving direct N(4S) attack. The discussion then shifts to the rate constants for reactions induced by direct N(4S) attack. The evaluation of the Short-Lived Energetic Afterglow theory is presented. The final chapter is devoted to the examination of emission from molecular species with electronic energy levels below 9.76 eV. The book can provide useful information to physicists, students, and researchers.




Assessment of Exposure-Response Functions for Rocket-Emission Toxicants


Book Description

The U.S. Air Force is developing a model to assist commanders in determining when it is safe to launch rocket vehicles. The model estimates the possible number and types of adverse health effects for people who might be exposed to the ground cloud created by rocket exhaust during a normal launch or during an aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants: hydrogen chloride, nitrogen dioxide, and nitric acid.




Review of Submarine Escape Action Levels for Selected Chemicals


Book Description

On-board fires can occur on submarines after events such as collision or explosion. These fires expose crew members to toxic concentrations of combustion products such as ammonia, carbon monoxide, hydrogen chloride, and hydrogen sulfide. Exposure to these substances at high concentrations may cause toxic effects to the respiratory and central nervous system; leading possible to death. T protect crew members on disabled submarines, scientists at the U.S. Navy Health Research Center's Toxicology Detachment have proposed two exposure levels, called submarine escape action level (SEAL) 1 and SEAL 2, for each substance. SEAL 1 is the maximum concentration of a gas in a disabled submarine below which healthy submariners can be exposed for up to 10 days without encountering irreversible health effects while SEAL 2 the maximum concentration of a gas in below which healthy submariners can be exposed for up to 24 hours without experiencing irreversible health effects. SEAL 1 and SEAL 2 will not impair the functions of the respiratory system and central nervous system to the extent of impairing the ability of crew members in a disabled submarine to escape, be rescued, or perform specific tasks. Hoping to better protect the safety of submariners, the chief of the Bureau of Medicine and Surgery requested that the National Research Council (NRC) review the available toxicologic and epidemiologic data on eight gases that are likely to be produced in a disabled submarine and to evaluate independently the scientific validity of the Navy's proposed SEALs for those gases. The NRC assigned the task to the Committee on Toxicology's (COT's) Subcommittee on Submarine Escape Action Levels. The specific task of the subcommittee was to review the toxicologic, epidemiologic, and related data on ammonia, carbon monoxide, chlorine, hydrogen chloride, hydrogen cyanide, hydrogen sulfide, nitrogen dioxide, and sulfur dioxide in order to validate the Navy's proposed SEALs. The subcommittee also considered the implications of exposures at hyperbaric conditions and potential interactions between the eight gases. Review of Submarine Escape Action Levels for Selected Chemicals presents the subcommittee's findings after evaluation human data from experimental, occupational, and epidemiologic studies; data from accident reports; and experimental-animal data. The evaluations focused primarily on high-concentration inhalation exposure studies. The subcommittee's recommended SEALs are based solely on scientific data relevant to health effects. The report includes the recommendations for each gas as determined by the subcommittee as well as the Navy's original instructions for these substances.




Chemical Kinetics and Reaction Dynamics


Book Description

Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.




Mars Science Laboratory


Book Description

The Mars Science Laboratory is the latest and most advanced NASA roving vehicle to explore the surface of Mars. The Curiosity rover has landed in Gale crater and will explore this region assessing conditions on the surface that might be hospitable to life and paving the way for later even more sophisticated exploration of the surface. This book describes the mission, its exploration and scientific objectives, studies leading to the design of the mission and the instruments that accomplish the objectives of the mission. This book is aimed at all those engaged in Martian studies as well as those interested in the origin of life in other environments. It will be a valuable reference for anyone who uses data from the Mars Science Laboratory. Previously published in Space Science Reviews journal, Vol. 170/1-4, 2012.







Concept Development Studies in Chemistry


Book Description

This is an on-line textbook for an Introductory General Chemistry course. Each module develops a central concept in Chemistry from experimental observations and inductive reasoning. This approach complements an interactive or active learning teaching approach. Additional multimedia resources can be found at: http: //cnx.org/content/col10264/1.5