Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.
















Report summaries


Book Description




Modelling, Simulation and Optimization


Book Description

Computer-Aided Design and system analysis aim to find mathematical models that allow emulating the behaviour of components and facilities. The high competitiveness in industry, the little time available for product development and the high cost in terms of time and money of producing the initial prototypes means that the computer-aided design and analysis of products are taking on major importance. On the other hand, in most areas of engineering the components of a system are interconnected and belong to different domains of physics (mechanics, electrics, hydraulics, thermal...). When developing a complete multidisciplinary system, it needs to integrate a design procedure to ensure that it will be successfully achieved. Engineering systems require an analysis of their dynamic behaviour (evolution over time or path of their different variables). The purpose of modelling and simulating dynamic systems is to generate a set of algebraic and differential equations or a mathematical model. In order to perform rapid product optimisation iterations, the models must be formulated and evaluated in the most efficient way. Automated environments contribute to this. One of the pioneers of simulation technology in medicine defines simulation as a technique, not a technology, that replaces real experiences with guided experiences reproducing important aspects of the real world in a fully interactive fashion [iii]. In the following chapters the reader will be introduced to the world of simulation in topics of current interest such as medicine, military purposes and their use in industry for diverse applications that range from the use of networks to combining thermal, chemical or electrical aspects, among others. We hope that after reading the different sections of this book we will have succeeded in bringing across what the scientific community is doing in the field of simulation and that it will be to your interest and liking. Lastly, we would like to thank all the authors for their excellent contributions in the different areas of simulation.







White's Handbook of Chlorination and Alternative Disinfectants


Book Description

New edition covers the latest practices, regulations, and alternative disinfectants Since the publication of the Fourth Edition of White's Handbook of Chlorination and Alternative Disinfectants more than ten years ago, the water industry has made substantial advances in their understanding and application of chlorine, hypochlorite, and alternative disinfectants for water and wastewater treatment. This Fifth Edition, with its extensive updates and revisions, reflects the current state of the science as well as the latest practices. Balancing theory with practice, the Fifth Edition covers such important topics as: Advances in the use of UV and ozone as disinfectants Alternative disinfectants such as chlorine dioxide, iodine, and bromine-related products Advanced oxidation processes for drinking water and wastewater treatment New developments and information for the production and handling of chlorine Latest regulations governing the use of different disinfectants For each disinfectant, the book explains its chemistry, effectiveness, dosing, equipment, and system design requirements. Moreover, the advantages and disadvantages of each disinfectant are clearly set forth. References at the end of each chapter guide readers to the primary literature for further investigation. Authored and reviewed by leading experts in the field of water and wastewater treatment, this Fifth Edition remains an ideal reference for utilities, regulators, engineers, and plant operators who need current information on the disinfection of potable water, wastewater, industrial water, and swimming pools.