Epigenetics and Chromatin


Book Description

Epigenetics refers to heritable patterns of gene expression which do not depend on alterations of genomic DNA sequence. This book provides a state-of-the-art account of a few selected hot spots by scientists at the edge in this extremely active field. It puts special emphasis on two main streams of research. One is the role of post-translational modifications of proteins, mostly histones, on chromatin structure and accessibility. The other one deals with parental genomic imprinting, a process which allows to express a few selected genes from only one of the parental allele while extinguishing the other.




Chromatin and Epigenetics


Book Description

Genomics has gathered broad public attention since Lamarck put forward his top-down hypothesis of 'motivated change' in 1809 in his famous book "Philosophie Zoologique" and even more so since Darwin published his famous bottom-up theory of natural selection in "The Origin of Species" in 1859. The public awareness culminated in the much anticipated race to decipher the sequence of the human genome in 2002. Over all those years, it has become apparent that genomic DNA is compacted into chromatin with a dedicated 3D higher-order organization and dynamics, and that on each structural level epigenetic modifications exist. The book "Chromatin and Epigenetics" addresses current issues in the fields of epigenetics and chromatin ranging from more theoretical overviews in the first four chapters to much more detailed methodologies and insights into diagnostics and treatments in the following chapters. The chapters illustrate in their depth and breadth that genetic information is stored on all structural and dynamical levels within the nucleus with corresponding modifications of functional relevance. Thus, only an integrative systems approach allows to understand, treat, and manipulate the holistic interplay of genotype and phenotype creating functional genomes. The book chapters therefore contribute to this general perspective, not only opening opportunities for a true universal view on genetic information but also being key for a general understanding of genomes, their function, as well as life and evolution in general.




Chromatin and Gene Regulation


Book Description

Written in an informal and accessible style, Chromatin and Gene Regulation enables the reader to understand the science of this rapidly moving field. Chromatin is a fundamental component in the network of controls that regulates gene expression. Many human diseases have been linked to disruption of these control processes by genetic or environmental factors, and unravelling the mechanisms by which they operate is one of the most exciting and rapidly developing areas of modern biology. Chromatin is central both to the rapid changes in gene transcription by which cells respond to changes in their environment and also to the maintenance of gene expression patterns from one cell generation to the next. This book will be an invaluable guide to undergraduate and postgraduate students in the biological sciences and all those with an interest in the medical implications of aberrant gene expression.




Chromatin and Gene Regulation


Book Description

Written in an informal and accessible style, Chromatin and Gene Regulation enables the reader to understand the science of this rapidly moving field. Chromatin is a fundamental component in the network of controls that regulates gene expression. Many human diseases have been linked to disruption of these control processes by genetic or environmental factors, and unravelling the mechanisms by which they operate is one of the most exciting and rapidly developing areas of modern biology. Chromatin is central both to the rapid changes in gene transcription by which cells respond to changes in their environment and also to the maintenance of gene expression patterns from one cell generation to the next. This book will be an invaluable guide to undergraduate and postgraduate students in the biological sciences and all those with an interest in the medical implications of aberrant gene expression.




Chromatin And Epigenetics: An Introduction To Epigenetic Mechanisms


Book Description

This book is an introduction to epigenetics, a controversial term that denotes the mechanisms that instruct the genome on how to express the purely genetic information that encodes proteins. Starting with the discovery of repressor proteins in the 1960s, epigenetics evolved into a kind of user manual for the genetic information, telling the genome if, when, how much and in what cells to read genes. Advances in epigenetics in the past 15 years have revealed how it lies at the heart of virtually every branch of biological and medical sciences and an understanding of its basic principles is therefore essential for every student in this field.The field of chromatin and epigenetics has developed very rapidly in the past 15-20 years. The pace in the field of epigenetics has now slowed down, the basic outlines of the mechanisms and implications have solidified and a consensus has been achieved among the researchers in the field. At the same time, these mechanisms and implications are now an integral part of how we think about the genome. Genes are more than just DNA and more than just protein-coding sequences and this realization has revolutionized our understanding of the genome, gene expression and its regulation in development, health and disease. It is time, therefore, for a textbook to help train a new generation of biologists and health scientists as well as providing a basic competence among practitioners in allied fields. The present book has grown out of a course given for the past 13 years to advanced undergraduates at Rutgers University. In keeping with the experience in that course, the book is abundantly illustrated, presents a wealth of specific examples, and includes a chapter describing a number of methods and techniques that have driven the advances in the field.




Epigenomics, from Chromatin Biology to Therapeutics


Book Description

Experts from academia, the biotechnology and pharmaceutical industries introduce biological, medical and methodological aspects of the emerging field of epigenomics.




Epigenetic Mechanisms of Gene Regulation


Book Description

Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.




Chromatin Regulation and Dynamics


Book Description

Chromatin Regulation and Dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The final chapters discuss the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin Regulation and Dynamics, part of the Translational Epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, and epidemiology by focusing on recent findings of the fast-moving field of chromatin regulation. Presents and discusses novel principles of chromatin regulation and dynamics with a cross-disciplinary perspective Promotes crosstalk between basic sciences and their applications in medicine Provides a framework for future studies on complex diseases by integrating various aspects of chromatin biology with cellular metabolic states, with an emphasis on the dynamic nature of chromatin and stochastic principles Integrates knowledge on the dynamic regulation of primary chromatin fiber with 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes




Epigenetics: Development and Disease


Book Description

Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.




Human Epigenetics: How Science Works


Book Description

The view “It’s all in our genes and we cannot change it” developed in the past 150 years since Gregor Mendel’s experiments with flowering pea plants. However, there is a special form of genetics, referred to as epigenetics, which does not involve any change of our genes but regulates how and when they are used. In the cell nucleus our genes are packed into chromatin, which is a complex of histone proteins and genomic DNA, representing the molecular basis of epigenetics. Our environment and lifestyle decisions influence the epigenetics of our cells and organs, i.e. epigenetics changes dynamically throughout our whole life. Thus, we have the chance to change our epigenetics in a positive as well as negative way and present the onset of diseases, such a type 2 diabetes or cancer. This textbook provides a molecular explanation how our genome is connected with environmental signals. It outlines that epigenetic programming is a learning process that results in epigenetic memory in each of the cells of our body. The central importance of epigenetics during embryogenesis and cellular differentiation as well as in the process of aging and the risk for the development of cancer are discussed. Moreover, the role of the epigenome as a molecular storage of cellular events not only in the brain but also in metabolic organs and in the immune system is described. The book represents an updated but simplified version of our textbook “Human Epigenomics” (ISBN 978-981-10-7614-8). The first five chapters explain the molecular basis of epigenetics, while the following seven chapters provide examples for the impact of epigenetics in human health and disease.