Book Description
More than 40 years after the discovery of the nucleosome as the fun- mental unit of chromatin, the multifaceted problem of how variations in ch- matin structure affect the activity of the eukaryotic genome has not been solved. However, during the past few years research on chromatin structure and fu- tion has gained considerable momentum, and impressive progress has been made at the level of concept development as well as filling in crucial detail. The structure of the nucleosome has been visualized at unprecedented reso- tion. Powerful multisubunit enzymes have been identified that alter histone/ DNA interactions in ways that expose regulatory sequences to factors initi- ing and regulating such nuclear processes as transcription. Though the imp- tance of posttranslational modifications of histones, notably their acetylation, has long been known, the finding that a number of bona fide regulators increase transcription by acetylating nucleosomes has lent new support to the old idea that the process of gene regulation is intimately related to the nature of the chromatin environment. A wealth of nonhistone proteins contribute to a continuum of structures with distinct biochemical properties and varying degrees of DNA condensation. Perhaps the most important conclusion from a large number of studies is a fresh appreciation of the dynamic nature of chromatin structure, the built-in flexibility providing the basis for regulation.