Chromatin Regulation and Dynamics


Book Description

Chromatin Regulation and Dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The final chapters discuss the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin Regulation and Dynamics, part of the Translational Epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, and epidemiology by focusing on recent findings of the fast-moving field of chromatin regulation. Presents and discusses novel principles of chromatin regulation and dynamics with a cross-disciplinary perspective Promotes crosstalk between basic sciences and their applications in medicine Provides a framework for future studies on complex diseases by integrating various aspects of chromatin biology with cellular metabolic states, with an emphasis on the dynamic nature of chromatin and stochastic principles Integrates knowledge on the dynamic regulation of primary chromatin fiber with 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Epigenetic Contributions in Autoimmune Disease


Book Description

This volume focuses on the relevance of epigenetic mechanisms in autoimmune disease. It provides new directions for future research in autoimmune disease.




Epigenetic Gene Expression and Regulation


Book Description

Epigenetic Gene Expression and Regulation reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies. The book shows how these heritable mechanisms allow individual cells to establish stable and unique patterns of gene expression that can be passed through cell divisions without DNA mutations, thereby establishing how different heritable patterns of gene regulation control cell differentiation and organogenesis, resulting in a distinct human organism with a variety of differing cellular functions and tissues. The work begins with basic biology, encompasses methods, cellular and tissue organization, topical issues in epigenetic evolution and environmental epigenesis, and lastly clinical disease discovery and treatment. Each highly illustrated chapter is organized to briefly summarize current research, provide appropriate pedagogical guidance, pertinent methods, relevant model organisms, and clinical examples. Reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies Helps readers understand how epigenetic marks are targeted, and to what extent transgenerational epigenetic changes are instilled and possibly passed onto offspring Chapters are replete with clinical examples to empower the basic biology with translational significance Offers more than 100 illustrations to distill key concepts and decipher complex science




Chromatin and Disease


Book Description

This book includes a collection of articles with the broad theme of disease connection to chromatin structure and function. It elaborates on the molecular pharmacology of the drugs targeting chromatin structure and its components. The book contains up-to-date information about the chromatin structure and chromatin related diseases and drug functions. This work is the first endeavor to present different aspects encompassing the above theme.




Mechanisms of Gene Regulation: How Science Works


Book Description

This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. Th is pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation.




Epigenetic Mechanisms of Gene Regulation


Book Description

Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.




Glioma Signaling


Book Description

Gliomas, developing in the brain from the transformed glial cells, are a very special kind of tumor, extremely refractory to conventional treatments. Therefore, for the development of new antitumor strategies, a better understanding of molecular mechanisms responsible for their biology, growth and invasion is still needed. This book is a reference on cellular signaling processes regulating gliomas physiology and invasiveness. The work is focused on the mechanism of nucleotide receptor activation by exogenous nucleotides and formation of complex signaling cascades induced by growth factors, cytokines and cannabinoids. The second edition of the book enriched in new chapters provides a framework explaining how signal transduction elements may modulate numerous genetic and epigenetic alterations, describes the role of local microenvironment in cellular growth, progression and invasion and, in the light of extensive new results, presents perspectives concerning potential targets for gliomas therapy.




SUMOylation and Ubiquitination


Book Description

Most proteins undergo post-translational modifications altering physical and chemical properties, folding, conformation distribution, stability, activity and function. Ubiquitin and SUMOs are related small proteins that are members of the large ubiquitin superfamily of post-translational modifiers. Written by highly respected leaders in their fields under the expert guidance of the editor, this volume covers the principles of ubiquitination and SUMOylation, presents detailed reviews of current and emerging concepts and highlights new advances in all areas of SUMOylation and ubiquitination. Topics of note include: the ubiquitin superfamily, the ubiquitin toolbox, onco viral exploitation of the SUMO system, small molecule modulators of desumoylation, mass spectrometry, global proteomic profiling of SUMO and ubiquitin, biotin-based approaches, genetic screening, SUMOylation networks in humans, targets for ubiquitin ligases, regulation of p53, protein homeostasis, miRNAs, DNA replication, DNA damage response, telomere biology, intracellular trafficking, regulation of angiogenesis, brain ischemia, autophagy, assembly and activity, antiviral defense, HIV infection, amyloid and amyloid-like proteins, plant immunity. This comprehensive and up-to-date book is the definitive reference volume on all aspects of SUMOylation and ubiquitination and is an essential acquisition for anyone involved in this area of biology.