C^\infinity - Differentiable Spaces


Book Description

The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Fréchet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C^\infinity-rings and C^\infinity-schemes, as well as in the framework of Spallek’s C^\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Fréchet spaces.




C^\infinity - Differentiable Spaces


Book Description

The volume develops the foundations of differential geometry so as to include finite-dimensional spaces with singularities and nilpotent functions, at the same level as is standard in the elementary theory of schemes and analytic spaces. The theory of differentiable spaces is developed to the point of providing a handy tool including arbitrary base changes (hence fibred products, intersections and fibres of morphisms), infinitesimal neighbourhoods, sheaves of relative differentials, quotients by actions of compact Lie groups and a theory of sheaves of Fréchet modules paralleling the useful theory of quasi-coherent sheaves on schemes. These notes fit naturally in the theory of C^\infinity-rings and C^\infinity-schemes, as well as in the framework of Spallek’s C^\infinity-standard differentiable spaces, and they require a certain familiarity with commutative algebra, sheaf theory, rings of differentiable functions and Fréchet spaces.




Smooth Manifolds and Observables


Book Description

This book gives an introduction to fiber spaces and differential operators on smooth manifolds. Over the last 20 years, the authors developed an algebraic approach to the subject and they explain in this book why differential calculus on manifolds can be considered as an aspect of commutative algebra. This new approach is based on the fundamental notion of observable which is used by physicists and will further the understanding of the mathematics underlying quantum field theory.







Harmonic Function Theory


Book Description

This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.




An Introduction to Manifolds


Book Description

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.




Lipschitz Algebras


Book Description

The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.




Differential Forms and Connections


Book Description

Introducing the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--this textbook covers both classical surface theory, the modern theory of connections, and curvature. With no knowledge of topology assumed, the only prerequisites are multivariate calculus and linear algebra.







Visual Complex Analysis


Book Description

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.