Civil Aircraft Electrical Power System Safety Assessment


Book Description

Civil Aircraft Electrical Power System Safety Assessment: Issues and Practices provides guidelines and methods for conducting a safety assessment process on civil airborne systems and equipment. As civil aircraft electrical systems become more complicated, electrical wiring failures have become a huge concern in industry and government—especially on aging platforms. There have been several accidents (most recently battery problems on the Boeing 777) with some of these having a relationship to wiring and power generation. Featuring a case study on the continuous safety assessment process of the civil airborne electrical power system, this book addresses problems, issues and troubleshooting techniques such as single event effects (SEE), the failure effects of electrical wiring interconnection systems (EWIS), formal theories and safety analysis methods in civil aircrafts. Introduces how to conduct assignment of development assurance levels for the electrical power system Includes safety assessments of aging platforms and their respective Electrical Wiring Interconnection System (EWIS) Features material on failure mechanisms for wiring systems and discussion of Failure Modes and Effects Analysis (FMEA) sustainment




Aircraft System Safety


Book Description

Aircraft System Safety: Assessments for Initial Airworthiness Certification presents a practical guide for the novice safety practitioner in the more specific area of assessing aircraft system failures to show compliance to regulations such as FAR25.1302 and 1309. A case study and safety strategy beginning in chapter two shows the reader how to bring safety assessment together in a logical and efficient manner. Written to supplement (not replace) the content of the advisory material to these regulations (e.g. AMC25.1309) as well as the main supporting reference standards (e.g. SAE ARP 4761, RTCA/DO-178, RTCA/DO-154), this book strives to amalgamate all these different documents into a consolidated strategy with simple process maps to aid in their understanding and optimise their efficient use. Covers the effect of design, manufacturing, and maintenance errors and the effects of common component errors Evaluates the malfunctioning of multiple aircraft components and the interaction which various aircraft systems have on the ability of the aircraft to continue safe flight and landing Presents and defines a case study (an aircraft modification program) and a safety strategy in the second chapter, after which each of the following chapters will explore the theory of the technique required and then apply the theory to the case study




GUIDELINES AND METHODS FOR CONDUCTING THE SAFETY ASSESSMENT PROCESS ON CIVIL AIRBORNE SYSTEMS AND EQUIPMENT


Book Description

This document describes guidelines and methods of performing the safety assessment for certification of civil aircraft. It is primarily associated with showing compliance with FAR/JAR 25.1309. The methods outlined here identify a systematic means, but not the only means, to show compliance. A subset of this material may be applicable to non-25.1309 equipment. The concept of Aircraft Level Safety Assessment is introduced and the tools to accomplish this task are outlined. The overall aircraft operating environment is considered.When aircraft derivatives or system changes are certified, the processes described herein are usually applicable only to the new designs or to existing designs that are affected by the changes. In the case of the implementation of existing designs in a new derivation, alternate means such as service experience may be used to show compliance.




Guidelines for Conducting the Safety Assessment Process on Civil Aircraft, Systems, and Equipment


Book Description

ARP4761A and its EUROCAE counterpart, ED-135, present guidelines for performing safety assessments of civil aircraft, systems, and equipment. They may be used when addressing compliance with certification requirements (e.g., 14 CFR/CS Parts 23, 25, 27, and 29 and 14 CFR Parts 33, 35, CS-E, and CS-P). ARP4761A/ED-135 may also be used to assist a company in meeting its own internal safety assessment standards. While the safety assessment processes described are primarily associated with civil aircraft, systems, and equipment, these processes may be used in many other applications. The guidelines herein identify a systematic safety assessment process, but other processes may be equally effective.




Aircraft System Safety


Book Description

Demonstrating safety for the application of ever more complex technologies is a formidable task. System engineers often do not have the appropriate training, are unfamiliar with the range of safety approaches, tools and techniques, and their managers do not know when and how these may be applied and appropriately resourced. Aircraft system safety provides a basic skill set for designers, safety practitioners, and their managers by exploring the relationship between safety, legal liability and regulatory requirements. Different approaches to measuring safety are discussed, along with the appropriate safety criteria used in judging acceptability.A wealth of ideas, examples, concepts, tools and approaches from diverse sources and industries is used in Aircraft system safety to bring the theory of safety concisely together in a practical and comprehensive reference. Engineering students, designers, safety assessors (and their managers), regulatory authorities (especially military), customers and projects teams should find Aircraft system safety provides an invaluable guide in appreciating the context, value and limitations of the various safety approaches used in cost-effectively accomplishing safety objectives. Explores the practical aspects of safety Invaluable guide for students, designers, and safety assessors Written by a leading expert in the field




Systematic Safety


Book Description




The Electrification of Civil Aircraft and the Evolution of Energy Storage


Book Description

Larger airframes drove the development of electrical systems, capable of quickly and reliably starting the new higher power engines. These soon gave rise to the need for engine-mounted electrical generators as the primary source of in-flight power for the electrical loads and onboard recharging of the aircraft battery system. Of all the backup power sources, batteries represent the most common means of storing energy for auxiliary or emergency power requirements. It is not unusual for a typical commercial airliner, such as a B-737 or A-320, to have dozens of batteries on board. Over time, multiple battery chemistries were put to the test and the industry is still working on the optimal option. The lithium-ion technology has been gaining acceptance, with some important aspects to be considered: the application type, basic safety requirements and the presence or absence of humans on the vehicle. The Electrification of Civil Aircraft and the Evolution of Energy Storage, edited by Michael Waller, presents 10 seminal SAE technical papers which address multiple aspects of specific design, cell configuration and mitigation strategies in the case of battery failure. Additionally, with all the changes resulting from monitoring, control, and performance/safety test criteria, battery manufacturers have found themselves becoming systems integrators, having to quickly acquire knowledge of electronics and system modeling. As new technologies become available, industry will attempt to take advantage of all potential benefits, in a process that can have a profound impact on the product offerings that emerge and in the way business is conducted. The Electrification of Civil Aircraft and the Evolution of Energy Storage presents a solid perspective on how civil aviation has matured in its quest to develop lighter, more efficient and less polluting aircraft, and also more electric.




Civil and Military Airworthiness


Book Description

Effective safety management has always been a key objective for the broader airworthiness sector. This book is focused on safety themes with implications on airworthiness management. It offers a diverse set of analyses on aircraft maintenance accidents, empirical and systematic investigations on important continuing airworthiness matters and research studies on methodologies for the risk and safety assessment in continuing and initial airworthiness. Overall, this collection of research and review papers is a valuable addition to the published literature, useful for the community of aviation professionals and researchers.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Artificial Intelligence and Machine Learning for Open-world Novelty


Book Description

Advances in Computers, Volume presents innovations in computer hardware, software, theory, design and applications, with this updated volume including new chapters on Contains novel subject matter that is relevant to computer science Includes the expertise of contributing authors Presents an easy to comprehend writing style