Design and Construction of Nuclear Power Plants


Book Description

Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear plants whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since.




Nuclear Engineering


Book Description

Nuclear Engineering: A Conceptual Introduction to Nuclear Power provides coverage of the introductory, salient principles of nuclear engineering in a comprehensive manner for those entering the profession at the end of their degree. The nuclear power industry is undergoing a renaissance because of the desire for low-carbon baseload electricity, the growing population, and environmental concerns about shale gas, so this book is a welcomed addition to the science. In addition, users will find a great deal of information on the change in the industry, along with other topical areas of interest that are uniquely covered. Intended for undergraduate students or early postgraduate students studying nuclear engineering, this new text will also be appealing to scientifically-literate non-experts wishing to be better informed about the 'nuclear option'. - Presents a succinct and clear explanation of the key facts and concepts on how nuclear engineering power systems function and how their related fuel supply cycles operate - Provides full coverage of the nuclear fuel cycle, including its scientific and historical basis - Describes a comprehensive range of relevant reactor designs, from those that are defunct, current, and in plan/construction for the future, including SMRs and GenIV - Summarizes all major accidents and their impact on the industry and society




Navy Civil Engineer


Book Description




Nuclear Power Safety


Book Description

A concise and current treatment of the subject of nuclear power safety, this work addresses itself to such issues of public concern as: radioactivity in routine effluents and its effect on human health and the environment, serious reactor accidents and their consequences, transportation accidents involving radioactive waste, the disposal of radioactive waste, particularly high-level wastes, and the possible theft of special nuclear materials and their fabrication into a weapon by terrorists. The implementation of the defense-in-depth concept of nuclear power safety is also discussed. Of interest to all undergraduate and graduate students of nuclear engineering, this work assumes a basic understanding of scientific and engineering principles and some familiarity with nuclear power reactors




Infrastructure Systems for Nuclear Energy


Book Description

Developing sufficient energy resources to replace coal, oil and gas is a globally critical necessity. Alternatives to fossil fuels such as wind, solar, or geothermal energies are desirable, but the usable quantities are limited and each has inherent deterrents. The only virtually unlimited energy source is nuclear energy, where safety of infrastructure systems is the paramount concern. Infrastructure Systems for Nuclear Energy addresses the analysis and design of infrastructures associated with nuclear energy. It provides an overview of the current and future nuclear power industry and the infrastructure systems from the perspectives of regulators, operators, practicing engineers and research academics. This book also provides details on investigations of containment structures, nuclear waste storage facilities and the applications of commercial/academic computer software. Specific environments that challenge the behavior of nuclear power plants infrastructure systems such as earthquake, blast, high temperature, irradiation effects, soil-structure interaction effect, etc., are also discussed. Key features: Includes contributions from global experts representing academia and industry Provides an overview of the nuclear power industry and nuclear infrastructure systems Presents the state-of-the-art as well as the future direction for nuclear civil infrastructure systems Infrastructure Systems for Nuclear Energy is a comprehensive, up-to-date reference for researchers and practitioners working in this field and for graduate studies in civil and mechanical engineering.





Book Description




Zirconium in the Nuclear Industry


Book Description







Engineering


Book Description

Incorporating HC 470-i-iii, 640-i-iii, 599-i-iii, 1064-i, 1202-i, 1194-i of session 2007-08




Sizewell B Power Station


Book Description

The award-winning -u2 billion Sizewell B nuclear power station on the Suffolk coast north east of Ipswich is the UK's first pressurized water reactor (PWR) electricity generation plant. Completed in 1995 it set new design and safety standards for PWR stations and has become a model for future PWR developments both in the UK and overseas. Compared with US designs the Sizewell B reactor design has 10 per cent thicker primary containment and a further 300mm thick secondary containment dome. The five refereed papers in this special issue of ICE Proceedings are written by senior members of the project team and cover the planning, design and construction of the power station together with its 56 m deep diaphragm cut-off wall and 900 m immersed tube cooling water tunnels.