Claims Reserving in General Insurance


Book Description

This is a single comprehensive reference source covering the key material on this subject, and describing both theoretical and practical aspects.




Bayesian Claims Reserving Methods in Non-life Insurance with Stan


Book Description

This book first provides a review of various aspects of Bayesian statistics. It then investigates three types of claims reserving models in the Bayesian framework: chain ladder models, basis expansion models involving a tail factor, and multivariate copula models. For the Bayesian inferential methods, this book largely relies on Stan, a specialized software environment which applies Hamiltonian Monte Carlo method and variational Bayes.




Risk and Insurance


Book Description

This textbook provides a broad overview of the present state of insurance mathematics and some related topics in risk management, financial mathematics and probability. Both non-life and life aspects are covered. The emphasis is on probability and modeling rather than statistics and practical implementation. Aimed at the graduate level, pointing in part to current research topics, it can potentially replace other textbooks on basic non-life insurance mathematics and advanced risk management methods in non-life insurance. Based on chapters selected according to the particular topics in mind, the book may serve as a source for introductory courses to insurance mathematics for non-specialists, advanced courses for actuarial students, or courses on probabilistic aspects of risk. It will also be useful for practitioners and students/researchers in related areas such as finance and statistics who wish to get an overview of the general area of mathematical modeling and analysis in insurance.




Stochastic Claims Reserving Methods in Insurance


Book Description

Claims reserving is central to the insurance industry. Insurance liabilities depend on a number of different risk factors which need to be predicted accurately. This prediction of risk factors and outstanding loss liabilities is the core for pricing insurance products, determining the profitability of an insurance company and for considering the financial strength (solvency) of the company. Following several high-profile company insolvencies, regulatory requirements have moved towards a risk-adjusted basis which has lead to the Solvency II developments. The key focus in the new regime is that financial companies need to analyze adverse developments in their portfolios. Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities but also to quantify possible shortfalls in these reserves that may lead to potential losses. Such an analysis requires stochastic modeling of loss liability cash flows and it can only be done within a stochastic framework. Therefore stochastic loss liability modeling and quantifying prediction uncertainties has become standard under the new legal framework for the financial industry. This book covers all the mathematical theory and practical guidance needed in order to adhere to these stochastic techniques. Starting with the basic mathematical methods, working right through to the latest developments relevant for practical applications; readers will find out how to estimate total claims reserves while at the same time predicting errors and uncertainty are quantified. Accompanying datasets demonstrate all the techniques, which are easily implemented in a spreadsheet. A practical and essential guide, this book is a must-read in the light of the new solvency requirements for the whole insurance industry.







Introduction to Insurance Mathematics


Book Description

This second edition expands the first chapters, which focus on the approach to risk management issues discussed in the first edition, to offer readers a better understanding of the risk management process and the relevant quantitative phases. In the following chapters the book examines life insurance, non-life insurance and pension plans, presenting the technical and financial aspects of risk transfers and insurance without the use of complex mathematical tools. The book is written in a comprehensible style making it easily accessible to advanced undergraduate and graduate students in Economics, Business and Finance, as well as undergraduate students in Mathematics who intend starting on an actuarial qualification path. With the systematic inclusion of practical topics, professionals will find this text useful when working in insurance and pension related areas, where investments, risk analysis and financial reporting play a major role.







Non-Life Insurance Mathematics


Book Description

"Offers a mathematical introduction to non-life insurance and, at the same time, to a multitude of applied stochastic processes. It gives detailed discussions of the fundamental models for claim sizes, claim arrivals, the total claim amount, and their probabilistic properties....The reader gets to know how the underlying probabilistic structures allow one to determine premiums in a portfolio or in an individual policy." --Zentralblatt für Didaktik der Mathematik




Risk Theory


Book Description

This book provides an overview of classical actuarial techniques, including material that is not readily accessible elsewhere such as the Ammeter risk model and the Markov-modulated risk model. Other topics covered include utility theory, credibility theory, claims reserving and ruin theory. The author treats both theoretical and practical aspects and also discusses links to Solvency II. Written by one of the leading experts in the field, these lecture notes serve as a valuable introduction to some of the most frequently used methods in non-life insurance. They will be of particular interest to graduate students, researchers and practitioners in insurance, finance and risk management.