Classic Works of the Dempster-Shafer Theory of Belief Functions


Book Description

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.




Classic Works of the Dempster-Shafer Theory of Belief Functions


Book Description

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.




Classic Works of the Dempster-Shafer Theory of Belief Functions


Book Description

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.




A Mathematical Theory of Evidence


Book Description

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.




On the belief universal gravitation (BUG)


Book Description

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.




Evidence Theory and Its Applications


Book Description

An introduction to evidence theory and its applications is presented in this book. It is based on the important Dempster-Shafer theory, which significantly generalizes classic Bayesian statistics and has proved to be useful in a variety of applications. The aim of the volume is to bring the theory up to date by focusing, in particular, on key work by Shafer and Logan as well as on some of the authors' own contributions. as: artificial intelligence, expert systems, information systems, computer science, decision making, problem solving, business management, statistics, and mathematics. This systematic self-contained description of evidence theory based on set theory is suitable for both lectures and self-study and should serve to strengthen the reader's background and problem-solving abilities.




Belief Functions: Theory and Applications


Book Description

This book constitutes the thoroughly refereed proceedings of the 4th International Conference on Belief Functions, BELIEF 2016, held in Prague, Czech Republic, in September 2016. The 25 revised full papers presented in this book were carefully selected and reviewed from 33 submissions. The papers describe recent developments of theoretical issues and applications in various areas such as combination rules; conflict management; generalized information theory; image processing; material sciences; navigation.




The Geometry of Uncertainty


Book Description

The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.




Belief Functions: Theory and Applications


Book Description

The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories. This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.




A new weighting factor in combining belief function


Book Description

Dempster-Shafer evidence theory has been widely used in various applications. However, to solve the problem of counter-intuitive outcomes by using classical Dempster-Shafer combination rule is still an open issue while fusing the conflicting evidences.