Classical Charged Particles (Third Edition)


Book Description

Originally written in 1964, this famous text is a study of the classical theory of charged particles. Many applications treat electrons as point particles. At the same time, there is a widespread belief that the theory of point particles is beset with various difficulties such as an infinite electrostatic self-energy, a rather doubtful equation of motion which admits physically meaningless solutions, violation of causality and others. The classical theory of charged particles has been largely ignored and has been left in an incomplete state since the discovery of quantum mechanics. Despite the great efforts of men such as Lorentz, Abraham, Poincaré, and Dirac, it is usually regarded as a “lost cause”. But thanks to progress made just a few years ago, the author is able to resolve the various problems and to complete this unfinished theory successfully.




Classical Charged Particles


Book Description

Widely-discussed in the theory of classical point charges are the difficulties of divergent self-energy, self-accelerating solutions, and pre-acceleration. This book explains the theory in the context of quantum electrodynamics, the neutral particle limit, and coherence with neighboring theories.




Classical Charged Particles


Book Description

Widely-discussed in the theory of classical point charges are the difficulties of divergent self-energy, self-accelerating solutions, and pre-acceleration. This book explains the theory in the context of quantum electrodynamics, the neutral particle limit, and coherence with neighboring theories.







Classical Electromagnetic Radiation


Book Description

Newly corrected, this highly acclaimed text is suitable foradvanced physics courses. The authors present a very accessiblemacroscopic view of classical electromagnetics thatemphasizes integrating electromagnetic theory with physicaloptics. The survey follows the historical development ofphysics, culminating in the use of four-vector relativity tofully integrate electricity with magnetism.Corrected and emended reprint of the Brooks/Cole ThomsonLearning, 1994, third edition.




Classical Dynamics of Particles and Systems


Book Description

Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.




Electrodynamics and Classical Theory of Fields and Particles


Book Description

Comprehensive graduate-level text by a distinguished theoretical physicist reveals the classical underpinnings of modern quantum field theory. Topics include space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and more. 1964 edition.




Classical Electromagnetic Radiation, Third Edition


Book Description

This newly corrected, highly acclaimed text offers intermediate-level juniors and first-year graduate students of physics a rigorous treatment of classical electromagnetics. The authors present a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism. Starting with a brief review of static electricity and magnetism, the treatment advances to examinations of multipole fields, the equations of Laplace and Poisson, dynamic electromagnetism, electromagnetic waves, reflection and refraction, and waveguides. Subsequent chapters explore retarded potentials and fields and radiation by charged particles; antennas; classical electron theory; interference and coherence; scalar diffraction theory and the Fraunhofer limit; Fresnel diffraction and the transition to geometrical optics; and relativistic electrodynamics. A basic knowledge of vector calculus and Fourier analysis is assumed, and several helpful appendices supplement the text. An extensive Solutions Manual is also available.




Gauge Theories of the Strong, Weak, and Electromagnetic Interactions


Book Description

A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies




Charged Particle Traps


Book Description

Over the last quarter of this century, revolutionary advances have been made both in kind and in precision in the application of particle traps to the study of thephysics of charged particles, leading to intensi?ed interest in, and wide proliferation of, this topic. This book is intended as a timely addition to the literature, providing a systematic uni?ed treatment of the subject, from the point of view of the application of these devices to fundamental atomic and particle physics. Thetechniqueofusingelectromagnetic?eldstocon?neandisolateatomic particles in vacuo, rather than by material walls of a container, was initially conceivedbyW.Paulintheformofa3Dversionoftheoriginalrfquadrupole mass ?lter, for which he shared the 1989 Nobel Prize in physics [1], whereas H.G. Dehmelt who also shared the 1989 Nobel Prize [2] saw these devices (including the Penning trap) as a way of isolating electrons and ions, for the purposes of high resolution spectroscopy. These two broad areas of appli- tion have developed more or less independently, each attaining a remarkable degree of sophistication and generating widespread interest and experimental activity.