Theories, Sites, Toposes


Book Description

According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.




Logic in Question


Book Description

This contributed volume collects papers related to the Logic in Question workshop, which has taken place annually at Sorbonne University in Paris since 2011. Each year, the workshop brings together historians, philosophers, mathematicians, linguists, and computer scientists to explore questions related to the nature of logic and how it has developed over the years. As a result, chapter authors provide a thorough, interdisciplinary exploration of topics that have been studied in the workshop. Organized into three sections, the first part of the book focuses on historical questions related to logic, the second explores philosophical questions, and the third section is dedicated to mathematical discussions. Specific topics include: • logic and analogy• Chinese logic• nineteenth century British logic (in particular Boole and Lewis Carroll)• logical diagrams • the place and value of logic in Louis Couturat’s philosophical thinking• contributions of logical analysis for mathematics education• the exceptionality of logic• the logical expressive power of natural languages• the unification of mathematics via topos theory Logic in Question will appeal to pure logicians, historians of logic, philosophers, linguists, and other researchers interested in the history of logic, making this volume a unique and valuable contribution to the field.




Toposes, Triples and Theories


Book Description

As its title suggests, this book is an introduction to three ideas and the connections between them. Before describing the content of the book in detail, we describe each concept briefly. More extensive introductory descriptions of each concept are in the introductions and notes to Chapters 2, 3 and 4. A topos is a special kind of category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. In that sense, a topos is a generalized set theory. However, it originated with Grothendieck and Giraud as an abstraction of the of the category of sheaves of sets on a topological space. Later, properties Lawvere and Tierney introduced a more general id~a which they called "elementary topos" (because their axioms did not quantify over sets), and they and other mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos, perhaps after a process of completion. The concept of triple originated (under the name "standard construc in Godement's book on sheaf theory for the purpose of computing tions") sheaf cohomology. Then Peter Huber discovered that triples capture much of the information of adjoint pairs. Later Linton discovered that triples gave an equivalent approach to Lawverc's theory of equational theories (or rather the infinite generalizations of that theory). Finally, triples have turned out to be a very important tool for deriving various properties of toposes.




Sketches of an Elephant: A Topos Theory Compendium


Book Description

Topos Theory is a subject that stands at the junction of geometry, mathematical logic and theoretical computer science, and it derives much of its power from the interplay of ideas drawn from these different areas. Because of this, an account of topos theory which approaches the subject from one particular direction can only hope to give a partial picture; the aim of this compendium is to present as comprehensive an account as possible of all the main approaches and to thereby demonstrate the overall unity of the subject. The material is organized in such a way that readers interested in following a particular line of approach may do so by starting at an appropriate point in the text.




From a Geometrical Point of View


Book Description

From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein’s Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane’s work in the early 1940’s and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics. From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.




Uncountably Categorical Theories


Book Description

The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.




Higher Topos Theory


Book Description

In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.




Sheaves in Geometry and Logic


Book Description

Sheaves arose in geometry as coefficients for cohomology and as descriptions of the functions appropriate to various kinds of manifolds. Sheaves also appear in logic as carriers for models of set theory. This text presents topos theory as it has developed from the study of sheaves. Beginning with several examples, it explains the underlying ideas of topology and sheaf theory as well as the general theory of elementary toposes and geometric morphisms and their relation to logic.




Forcing and Classifying Topoi


Book Description

We give a general method of forcing over categories as a category-theoretic universal construction which subsumes, on one hand, all known instances of forcing in set theory, Boolean and Heyting valued models and sheaf interpretations for both classical and intuitionistic formal systems; and, on the other hand, constructions of classifying topoi in topos theory.




Objects, Structures, and Logics


Book Description

This edited collection casts light on central issues within contemporary philosophy of mathematics such as the realism/anti-realism dispute; the relationship between logic and metaphysics; and the question of whether mathematics is a science of objects or structures. The discussions offered in the papers involve an in-depth investigation of, among other things, the notions of mathematical truth, proof, and grounding; and, often, a special emphasis is placed on considerations relating to mathematical practice. A distinguishing feature of the book is the multicultural nature of the community that has produced it. Philosophers, logicians, and mathematicians have all contributed high-quality articles which will prove valuable to researchers and students alike.