Clifford Algebras and Lie Theory


Book Description

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.




Clifford Algebras and Lie Theory


Book Description

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré–Birkhoff–Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.




Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups


Book Description

Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.




Clifford Algebra to Geometric Calculus


Book Description

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.




Clifford Algebras and the Classical Groups


Book Description

The Clifford algebras of real quadratic forms and their complexifications are studied here in detail, and those parts which are immediately relevant to theoretical physics are seen in the proper broad context. Central to the work is the classification of the conjugation and reversion anti-involutions that arise naturally in the theory. It is of interest that all the classical groups play essential roles in this classification. Other features include detailed sections on conformal groups, the eight-dimensional non-associative Cayley algebra, its automorphism group, the exceptional Lie group G(subscript 2), and the triality automorphism of Spin 8. The book is designed to be suitable for the last year of an undergraduate course or the first year of a postgraduate course.




Lie Groups and Lie Algebras - A Physicist's Perspective


Book Description

This book is intended for graduate students in Physics. It starts with a discussion of angular momentum and rotations in terms of the orthogonal group in three dimensions and the unitary group in two dimensions and goes on to deal with these groups in any dimensions. All representations of su(2) are obtained and the Wigner-Eckart theorem is discussed. Casimir operators for the orthogonal and unitary groups are discussed. The exceptional group G2 is introduced as the group of automorphisms of octonions. The symmetric group is used to deal with representations of the unitary groups and the reduction of their Kronecker products. Following the presentation of Cartan's classification of semisimple algebras Dynkin diagrams are described. The book concludes with space-time groups - the Lorentz, Poincare and Liouville groups - and a derivation of the energy levels of the non-relativistic hydrogen atom in n space dimensions.




An Introduction to Clifford Algebras and Spinors


Book Description

This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.




Clifford Algebras and Dirac Operators in Harmonic Analysis


Book Description

The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.




Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics


Book Description

This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.




The Algebraic Theory of Spinors and Clifford Algebras


Book Description

In 1982, Claude Chevalley expressed three specific wishes with respect to the publication of his Works. First, he stated very clearly that such a publication should include his non technical papers. His reasons for that were two-fold. One reason was his life long commitment to epistemology and to politics, which made him strongly opposed to the view otherwise currently held that mathematics involves only half of a man. As he wrote to G. C. Rota on November 29th, 1982: "An important number of papers published by me are not of a mathematical nature. Some have epistemological features which might explain their presence in an edition of collected papers of a mathematician, but quite a number of them are concerned with theoretical politics ( . . . ) they reflect an aspect of myself the omission of which would, I think, give a wrong idea of my lines of thinking". On the other hand, Chevalley thought that the Collected Works of a mathematician ought to be read not only by other mathematicians, but also by historians of science.