Climate Adaptation Engineering


Book Description

Climate Adaptation Engineering defines the measures taken to reduce vulnerability and increase the resiliency of built infrastructure. This includes enhancement of design standards, structural strengthening, utilisation of new materials, and changes to inspection and maintenance regimes, etc. The book examines the known effects and relationships of climate change variables on infrastructure and risk-management policies. Rich with case studies, this resource will enable engineers to develop a long-term, self-sustained assessment capacity and more effective risk-management strategies. The book's authors also take a long-term view, dealing with several aspects of climate change. The text has been written in a style accessible to technical and non-technical readers with a focus on practical decision outcomes. - Provides climate scenarios and their likelihoods, hazard modelling (wind, flood, heatwaves, etc.), infrastructure vulnerability, resilience or exposure (likelihood and extent of damage) - Introduces the key concepts needed to assess the risks, costs and benefits of future proofing infrastructures in a changing climate - Includes case studies authored by experts from around the world




A Case for Climate Engineering


Book Description

A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming. Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake. A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.




Engineering Response to Climate Change, Second Edition


Book Description

A clear, concise discussion of today’s hottest topics in climate change, including adapting to climate change and geo-engineering to mitigate the effects of change, Engineering Response to Climate Change, Second Edition takes on the tough questions of what to do and offers real solutions to the practical problems caused by radical changes in the Earth’s climate. From energy consumption and carbon dioxide emissions reduction, to climate-altering technologies, this new edition explores the latest concerns such as acidification of the ocean, energy efficiency, transportation, space solar power, and future and emerging possibilities. The editors set the stage by discussing the separate issues of the emissions of radiatively important atmospheric constituents, energy demand, energy supply, agriculture, water resources, coastal hazards, adaption strategies, and geo-engineering. They explain the difference between the natural and human drivers of climate change and describe how humans have influenced the global climate during past decades. Each chapter concludes with discussion questions, calculations, and possible research topics. See What’s in the Second Edition: New conceptual tools and research necessary for problems associated with fossil fuels Cutting-edge topics such as adaption and geo-engineering The latest concerns such as acidification of the ocean, energy efficiency, transportation, and space solar power Solutions to problems caused by changes in the Earth’s climate So much has changed in the 15 years since the publication of the first edition, that this is, in effect, a completely new book. However, the general theme is the same: the climate energy problem has become largely an engineering problem. With this in mind, the book explores what engineers can do to prevent, mitigate, or adapt to climate change.




Climate-Resilient Infrastructure


Book Description

Abstract: Prepared by the Committee on Adaptation to a Changing Climate of ASCE Civil infrastructure systems traditionally have been designed for appropriate functionality, durability, and safety for climate and weather extremes during their full-service lives; however, climate scientists inform us that the extremes of climate and weather have altered from historical values in ways difficult to predict or project. Climate-Resilient Infrastructure: Adaptive Design and Risk Management, MOP 140, provides guidance for and contributes to the developing or enhancing of methods for infrastructure analysis and design in a world in which risk profiles are changing and can be projected with varying degrees of uncertainty requiring a new design philosophy to meet this challenge. The underlying approaches in this manual of practice (MOP) are based on probabilistic methods for quantitative risk analysis, and the design framework provided focuses on identifying and analyzing low-regret, adaptive strategies to make a project more resilient. Beginning with an overview of the driving forces and hazards associated with a changing climate, subsequent chapters in MOP 140 provide observational methods, illustrative examples, and case studies; estimation of extreme events particularly related to precipitation with guidance on monitoring and measuring methods; flood design criteria and the development of project design flood elevations; computational methods of determining flood loads; adaptive design and adaptive risk management in the context of life-cycle engineering and economics; and climate resilience technologies. MOP 140 will be of interest to engineers, researchers, planners, and other stakeholders charged with adaptive design decisions to achieve infrastructure resilience targets while minimizing life-cycle costs in a changing climate




Environmental Engineering for the 21st Century


Book Description

Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.




Resilience


Book Description

In Resilience: The Science of Adaptation to Climate Change leading experts analyze and question ongoing adaptation interventions. Contributions span different disciplinary perspectives, from law to engineering, and cover different regions from Africa to the Pacific. Chapters assess the need for adaptation, highlighting climate change impacts such as sea level rise, increases in temperature, changing hydrological variability, and threats to food security. The book then discusses the state of global legislation and means of tracking progress. It reviews ways to build resilience in a range of contexts— from the Arctic, to small island states, to urban areas, across food and energy systems. Critical tools for adaptation planning are highlighted - from social capital and ethics, to decision support systems, to innovative finance and risk transfer mechanisms. Controversies related to geoengineering and migration are also discussed. This book is an indispensable resource for scientists, practitioners, and policy makers working in climate change adaptation, sustainable development, ecosystem management, and urban planning. - Provides a summary of tools and methods used in adaptation including recent innovations - Includes chapters from a diverse range of authors from academic institutions, humanitarian organizations, and the United Nations - Evaluates adaptation options, highlighting gaps in knowledge where further research or new tools are needed




Climate Engineering and the Law


Book Description

The first book to focus on the legal aspects of climate engineering, making recommendations for future laws and governance.




Imagining Climate Engineering


Book Description

This book highlights the increasing attention for climate engineering, a set of speculative technologies aimed to counter global warming. What is the future of the global climate? And who gets to decide—or even design—this future? Imagining Climate Engineering explores how and why climate engineering became a potential approach to anthropogenic climate change. Specifically, it showcases how views on the future of climate change and climate engineering evolved by addressing the ways in which climate engineers view its respective physical, political, and moral domains. Tracing the intellectual and political history of dreams to control the weather and climate as well as the discovery of climate change, Jeroen Oomen examines the imaginative parameters within which contemporary climate engineering research takes place. Introducing the analytical metaphor ‘ways of seeing’ to describe explicit or implicit visions, understandings, and foci that facilitate a particular understanding of what is at stake, Imagining Climate Engineering shows how visions on the knowability of climate tie into moral and political convictions about the possibility and desirability of engineering the climate. Marrying science and technology studies and the environmental humanities, Oomen provides crucial insights for the future of the climate change debate for scholars and students.




Compatible Solutes Engineering for Crop Plants Facing Climate Change


Book Description

Plants, being sessile and autotrophic in nature, must cope with challenging environmental aberrations and therefore have evolved various responsive or defensive mechanisms including stress sensing mechanisms, antioxidant system, signaling pathways, secondary metabolites biosynthesis, and other defensive pathways among which accumulation of osmolytes or osmo-protectants is an important phenomenon. Osmolytes with organic chemical nature termed as compatible solutes are highly soluble compounds with no net charge at physiological pH and nontoxic at higher concentrations to plant cells. Compatible solutes in plants involve compounds like proline, glycine betaine, polyamines, trehalose, raffinose family oligosaccharides, fructans, gamma aminobutyric acid (GABA), and sugar alcohols playing structural, physiological, biochemical, and signaling roles during normal plant growth and development. The current and sustaining problems of climate change and increasing world population has challenged global food security. To feed more than 9 billion, the estimated population by 2050, the yield of major crops needs to be increased 1.1–1.3% per year, which is mainly restricted by the yield ceiling. A major factor limiting the crop yield is the changing global environmental conditions which includes drought, salinity and extreme temperatures and are responsible for a reduction of crop yield in almost all the crop plants. This condition may worsen with a decrease in agricultural land or the loss of potential crop yields by 70%. Therefore, it is a challenging task for agricultural scientists to develop tolerant/resistant varieties against abiotic stresses. The development of stress tolerant plant varieties through conventional breeding is very slow due to complex multigene traits. Engineering compatible solutes biosynthesis by deciphering the mechanism behind the abiotic tolerance or accumulation in plants cell is a potential emerging strategy to mitigate adverse effects of abiotic stresses and increase global crop production. However, detailed information on compatible solutes, including their sensing/signaling, biosynthesis, regulatory components, underlying biochemical mechanisms, crosstalk with other signaling pathways, and transgenic development have not been compiled into a single resource. Our book intends to fill this unmet need, with insight from recent advances in compatible solutes research on agriculturally important crop plants.




Can Science Fix Climate Change?


Book Description

Climate change seems to be an insurmountable problem. Political solutions have so far had little impact. Some scientists are now advocating the so-called 'Plan B', a more direct way of reducing the rate of future warming by reflecting more sunlight back to space, creating a thermostat in the sky. In this book, Mike Hulme argues against this kind of hubristic techno-fix. Drawing upon a distinguished career studying the science, politics and ethics of climate change, he shows why using science to fix the global climate is undesirable, ungovernable and unattainable. Science and technology should instead serve the more pragmatic goals of increasing societal resilience to weather risks, improving regional air quality and driving forward an energy technology transition. Seeking to reset the planet’s thermostat is not the answer.