Climate System Dynamics and Modelling


Book Description

This textbook presents all aspects of climate system dynamics, on all timescales from the Earth's formation to modern human-induced climate change. It discusses the dominant feedbacks and interactions between all the components of the climate system: atmosphere, ocean, land surface and ice sheets. It addresses one of the key challenges for a course on the climate system: students can come from a range of backgrounds. A glossary of key terms is provided for students with little background in the climate sciences, whilst instructors and students with more expertise will appreciate the book's modular nature. Exercises are provided at the end of each chapter for readers to test their understanding. This textbook will be invaluable for any course on climate system dynamics and modeling, and will also be useful for scientists and professionals from other disciplines who want a clear introduction to the topic.




Modeling Dynamic Climate Systems


Book Description

In the process of building and using models to comprehend the dynamics of the atmosphere, ocean and climate, the reader will learn how the different components of climate systems function, interact with each other, and vary over time. Topics include the stability of climate, Earths energy balance, parcel dynamics in the atmosphere, the mechanisms of heat transport in the climate system, and mechanisms of climate variability. Special attention is given to the effects of climate change.




Introduction to Climate Modelling


Book Description

A three-tier approach is presented: (i) fundamental dynamical concepts of climate processes, (ii) their mathematical formulation based on balance equations, and (iii) the necessary numerical techniques to solve these equations. This book showcases the global energy balance of the climate system and feedback processes that determine the climate sensitivity, initial-boundary value problems, energy transport in the climate system, large-scale ocean circulation and abrupt climate change.




Demystifying Climate Models


Book Description

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.




Assessment of Approaches to Updating the Social Cost of Carbon


Book Description

The social cost of carbon (SCC) for a given year is an estimate, in dollars, of the present discounted value of the damage caused by a 1-metric ton increase in CO2 emissions into the atmosphere in that year; or equivalently, the benefits of reducing CO2 emissions by the same amount in that given year. The SCC is intended to provide a comprehensive measure of the monetized value of the net damages from global climate change from an additional unit of CO2, including, but not limited to, changes in net agricultural productivity, energy use, human health effects, and property damages from increased flood risk. Federal agencies use the SCC to value the CO2 emissions impacts of various policies including emission and fuel economy standards for vehicles, regulations of industrial air pollutants from industrial manufacturing, emission standards for power plants and solid waste incineration, and appliance energy efficiency standards. There are significant challenges to estimating a dollar value that reflects all the physical, human, ecological, and economic impacts of climate change. Recognizing that the models and scientific data underlying the SCC estimates evolve and improve over time, the federal government made a commitment to provide regular updates to the estimates. To assist with future revisions of the SCC, the Interagency Working Group on the Social Cost of Carbon (IWG) requested the National Academies of Sciences, Engineering, and Medicine complete a study that assessed the merits and challenges of a limited near-term update to the SCC and of a comprehensive update of the SCC to ensure that the estimates reflect the best available science. This interim report focuses on near-term updates to the SCC estimates.




Nonlinear and Stochastic Climate Dynamics


Book Description

It is now widely recognized that the climate system is governed by nonlinear, multi-scale processes, whereby memory effects and stochastic forcing by fast processes, such as weather and convective systems, can induce regime behavior. Motivated by present difficulties in understanding the climate system and to aid the improvement of numerical weather and climate models, this book gathers contributions from mathematics, physics and climate science to highlight the latest developments and current research questions in nonlinear and stochastic climate dynamics. Leading researchers discuss some of the most challenging and exciting areas of research in the mathematical geosciences, such as the theory of tipping points and of extreme events including spatial extremes, climate networks, data assimilation and dynamical systems. This book provides graduate students and researchers with a broad overview of the physical climate system and introduces powerful data analysis and modeling methods for climate scientists and applied mathematicians.




Climate Dynamics


Book Description

A concise introduction to climate system dynamics Climate Dynamics is an advanced undergraduate-level textbook that provides an essential foundation in the physical understanding of the earth's climate system. The book assumes no background in atmospheric or ocean sciences and is appropriate for any science or engineering student who has completed two semesters of calculus and one semester of calculus-based physics. Describing the climate system based on observations of the mean climate state and its variability, the first section of the book introduces the vocabulary of the field, the dependent variables that characterize the climate system, and the typical approaches taken to display these variables. The second section of the book gives a quantitative understanding of the processes that determine the climate state—radiation, heat balances, and the basics of fluid dynamics. Applications for the atmosphere, ocean, and hydrological cycle are developed in the next section, and the last three chapters of the book directly address global climate change. Throughout, the textbook makes connections between mathematics and physics in order to illustrate the usefulness of mathematics, particularly first-year calculus, for predicting changes in the physical world. Climate change will impact every aspect of life in the coming decades. This book supports and broadens understanding of the dynamics of the climate system by offering a much-needed introduction that is accessible to any science, math, or engineering student. Makes a physically based, quantitative understanding of climate change accessible to all science, engineering, and mathematics undergraduates Explains how the climate system works and why the climate is changing Reinforces, applies, and connects the basic ideas of calculus and physics Emphasizes fundamental observations and understanding An online illustration package and solutions manual for professors is available




System Dynamics


Book Description

This book covers the broad spectrum of system dynamics methodologies for the modelling and simulation of complex systems: systems thinking, causal diagrams, systems structure of stock and flow diagrams, parameter estimation and tests for confidence building in system dynamics models. It includes a comprehensive review of model validation and policy design and provides a practical presentation of system dynamics modelling. It also offers numerous worked-out examples and case studies in diverse fields using STELLA and VENSIM. The system dynamics methodologies presented here can be applied to nearly all areas of research and planning, and the simulations provided make the complicated issues more easily understandable. System Dynamics: Modelling and Simulation is an essential system dynamics and systems engineering textbook for undergraduate and graduate courses. It also offers an excellent reference guide for managers in industry and policy planners who wish to use modelling and simulation to manage complex systems more effectively, as well as researchers in the fields of modelling and simulation-based systems thinking.




System Dynamics


Book Description

This book allows the reader to acquire step-by-step in a time-efficient and uncomplicated the knowledge in the formation and construction of dynamic models using Vensim. Many times, the models are performed with minimal current data and very few historical data, the simulation models that the student will design in this course accommodate these analyses, with the construction of realistic hypotheses and elaborate behavior models. That's done with the help of software Vensim that helps the construction of the models as well as performing model simulations. At the end of the book, the reader is able to: - Describe the components of a complex system. - Diagnose the natural evolution of the system under analysis. - Create a model of the system and present it using the simulation software. - Carry out simulations with the model, in order to predict the behavior of the system. Content Environmental Area 1. Population Growth 2. Ecology of a Natural Reserve 3. Effects of the Intensive Farming 4. The Fishery of Shrimp 5. Rabbits and Foxes 6. A Study of Hogs 7. Ingestion of Toxins 8. The Barays of Angkor 9. The Golden Number Management Area 10. Production and Inventory 11. CO2 Emissions 12. How to Work More and Better 13. Faults 14. Project Dynamics 15. Innovatory Companies 16. Quality Control 17. The impact of a Business Plan Social Area 18. Filling a Glass 19. A Catastrophe Study 20. The Young Ambitious Worker 21. Development of an Epidemic 22. The Dynamics of Two Clocks Mechanical Area 23. The Tank 24. Study of the Oscillatory Movements 25. Design of a Chemical Reactor 26. The Butterfly Effect 27. The Mysterious Lamp Advanced Exercises (Vensim PLE PLUS) 28. Import data from an Excel file 29. Building Games and Learning Labs 30. Interactive models 31. Input Output Controls 32. Sensitivity Analysis Annex I. Guide to creating a model II. Functions, Tables and Delays III. Frequently Asked Questions FAQs IV. Download the models of this book The author Juan Martín García is teacher and a worldwide recognized expert in System Dynamics, with more than twenty years of experience in this field. Ph.D. Industrial Engineer (Spain) and Postgraduated Diploma in Business Dynamics at Massachusetts Institute of Technology MIT (USA). He teaches Vensim online courses in http://vensim.com/vensim-online-courses/ based on System Dynamics.




Climate Change and Climate Modeling


Book Description

Provides students with a solid foundation in climate science, with which to understand global warming, natural climate variations, and climate models. As climate models are one of our primary tools for predicting and adapting to climate change, it is vital we appreciate their strengths and limitations. Also key is understanding what aspects of climate science are well understood and where quantitative uncertainties arise. This textbook will inform the future users of climate models and the decision-makers of tomorrow by providing the depth they need, while requiring no background in atmospheric science and only basic calculus and physics. Developed from a course that the author teaches at UCLA, material has been extensively class-tested and with online resources of colour figures, Powerpoint slides, and problem sets, this is a complete package for students across all sciences wishing to gain a solid grounding in climate science.