Climbing and Walking Robots


Book Description

The interest in climbing and walking robots (CLAWAR) has intensified in recent years, and novel solutions for complex and very diverse applications have been anticipated by means of significant progress in this area of robotics. The shift of robotics from manufacturing to services is clearly gaining pace as witnessed by the growth in activities in the CLAWAR area. Moreover, the amalgamation of original ideas and related innovations, search for new potential applications and the use of state of the art support technologies indicate that important steps are likely in the near future and the results could have a significant beneficial socio-economic impact. This book reports on state of the art latest research and development findings and results presented in the CLAWAR 2005 Conference. These are presented in 131 technical articles by authors from 27 countries worldwide. The book is structured into 21 sections, which include some of the traditional topics featured in previous CLAWAR conferences with a set of new topics such as bioengineering, flexible manipulators, personal assistance applications, non-destructive test applications, security and surveillance applications and space applications of robotics. The editors are grateful to colleagues within the committee structure of the CLAWAR 2005 for their help in the review process of the articles and their support throughout this project.




Advances in Mobile Robotics


Book Description

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. It contains peer-reviewed articles presented at the CLAWAR 2008 conference. Robots are no longer confined to industrial manufacturing environments; rather, a great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high-profile international event, acts as a platform for dissemination of research and development findings to address the current interest in mobile robotics in meeting the needs of mankind in various sectors of the society. These include personal care, public health, and services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general, and in mobile robotics specifically.




Adaptive Mobile Robotics


Book Description

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.




How to Walk on Water and Climb up Walls


Book Description

Discovering the secrets of animal movement and what they can teach us Insects walk on water, snakes slither, and fish swim. Animals move with astounding grace, speed, and versatility: how do they do it, and what can we learn from them? In How to Walk on Water and Climb up Walls, David Hu takes readers on an accessible, wondrous journey into the world of animal motion. From basement labs at MIT to the rain forests of Panama, Hu shows how animals have adapted and evolved to traverse their environments, taking advantage of physical laws with results that are startling and ingenious. In turn, the latest discoveries about animal mechanics are inspiring scientists to invent robots and devices that move with similar elegance and efficiency. Hu follows scientists as they investigate a multitude of animal movements, from the undulations of sandfish and the way that dogs shake off water in fractions of a second to the seemingly crash-resistant characteristics of insect flight. Not limiting his exploration to individual organisms, Hu describes the ways animals enact swarm intelligence, such as when army ants cooperate and link their bodies to create bridges that span ravines. He also looks at what scientists learn from nature’s unexpected feats—such as snakes that fly, mosquitoes that survive rainstorms, and dead fish that swim upstream. As researchers better understand such issues as energy, flexibility, and water repellency in animal movement, they are applying this knowledge to the development of cutting-edge technology. Integrating biology, engineering, physics, and robotics, How to Walk on Water and Climb up Walls demystifies the remarkable mechanics behind animal locomotion.




Climbing and Walking Robots


Book Description

These proceedings present a full state-of-the-art picture of the popular and motivating field of climbing and walking robots, featuring recent research by leading climbing and walking robot experts in various industrial and emerging fields.




Climbing and Walking Robots


Book Description

Recent advances in robot technology from around the world Climbing and Walking Robots: From Biology to Industrial Applications is a collection of papers presented at the 2001 CLAWAR conference. Featuring current work from leading robotics labs around the globe, this book presents the latest in robotics across industries and suggests directions for future research. Topics include design methodology, bipedal locomotion, fluid actuators, sensor systems, control architecture and simulation, and more. Relevant to mechanical engineers and robotics specialists in both industry and academia, these papers showcase the field's latest technological advances.




Climbing and Walking Robots


Book Description

Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study.




Climbing and Walking Robots and the Support Technologies for Mobile Machines


Book Description

Robotic technology advances for a wide variety of applications Climbing and Walking Robots and the Support Technologies for Mobile Machines explores the increasing interest in real-world robotics and the surge in research and invention it has inspired. Featuring the latest advances from leading robotics labs around the globe, this book presents solutions for perennial challenges in robotics and suggests directions for future research. With applications ranging from personal services and entertainment to emergency rescue and extreme environment intervention, the groundbreaking work presented here provides a glimpse of the future.




Climbing and Walking Robots and the Supporting Technologies for Mobile Machines


Book Description

Bringing together academics, researchers, and industrialists, Climbing and Walking Robots 2003 (CLAWAR 2003) provides a forum for cross-fertilization in the different specialities so that both state-of-the-art and industrial applications can be reported on. Original contributions, both industrial and those in new/emerging fields, provide a full picture of climbing and walking robots. The interest in climbing and walking robots (CLAWAR) has increased considerably over recent years, addressing many application fields such as exploration/intervention in extreme environments, personal services, emergency rescue operations, transportation, entertainment, etc., and envisage humanoid robots evolving into mechatronic replicas of ourselves. Topics covered include: Biological Inspired Systems Medical Systems Control of CLAWAR Design Methodology System Modelling and Simulation Modularity and System Architecture Gait Generation and Stability of CLAWAR Biped Locomotion Multi-legged Locomotion Micro Machines Applications Climbing Robots Actuators, Sensors, Navigation, and Sensors Fusion CLAWAR Network Workpackages




Advances In Climbing And Walking Robots - Proceedings Of 10th International Conference (Clawar 2007)


Book Description

Robotics is an exciting field in engineering and natural sciences. Robotics has already made a significant contribution to many industries with the widespread use of industrial robots for tasks such as assembly, welding, painting, and handling materials. In parallel, we have witnessed the emergence of special robots which can undertake assistive jobs, such as search and rescue, de-mining, surveillance, exploration, and security functions. Indeed, the interest in mobile machines, such as climbing and walking robots, has broadened the scope of investigation in robotics. This volume covers broad topics related to mobile machines in general, and climbing and walking robots in particular. Papers from the following keynote speakers are included: Heinz Worn (University of Karlsruhe, Germany), Atsuo Takanishi (University of Waseda, Japan), John Billingsley (University of Southern Queensland, Australia), Bryan Bridge (London South Bank University, UK) and Neville Hogan (Massachusetts Institute of Technology, USA).