Clinical DNA Variant Interpretation


Book Description

Clinical DNA Variant Interpretation: Theory and Practice, a new volume in the Translational and Applied Genomics series, covers foundational aspects, modes of analysis, technology, disease and disorder specific case studies, and clinical integration. This book provides a deep theoretical background, as well as applied case studies and methodology, enabling researchers, clinicians and healthcare providers to effectively classify DNA variants associated with disease and patient phenotypes. Practical chapters discuss genomic variant interpretation, terminology and nomenclature, international consensus guidelines, population allele frequency, functional evidence transcripts for RNA, proteins, and enzymes, somatic mutations, somatic profiling, and much more. - Compiles best practices, methods and sound evidence for DNA variant classification in one applied volume - Features chapter contributions from international leaders in the field - Includes practical examples of variant classification for common and rare disorders, and across clinical phenotypes




Handbook of Statistical Genomics


Book Description

A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.




An Evidence Framework for Genetic Testing


Book Description

Advances in genetics and genomics are transforming medical practice, resulting in a dramatic growth of genetic testing in the health care system. The rapid development of new technologies, however, has also brought challenges, including the need for rigorous evaluation of the validity and utility of genetic tests, questions regarding the best ways to incorporate them into medical practice, and how to weigh their cost against potential short- and long-term benefits. As the availability of genetic tests increases so do concerns about the achievement of meaningful improvements in clinical outcomes, costs of testing, and the potential for accentuating medical care inequality. Given the rapid pace in the development of genetic tests and new testing technologies, An Evidence Framework for Genetic Testing seeks to advance the development of an adequate evidence base for genetic tests to improve patient care and treatment. Additionally, this report recommends a framework for decision-making regarding the use of genetic tests in clinical care.




Clinical Applications for Next-Generation Sequencing


Book Description

Clinical Applications for Next Generation Sequencing provides readers with an outstanding postgraduate resource to learn about the translational use of NGS in clinical environments. Rooted in both medical genetics and clinical medicine, the book fills the gap between state-of-the-art technology and evidence-based practice, providing an educational opportunity for users to advance patient care by transferring NGS to the needs of real-world patients. The book builds an interface between genetic laboratory staff and clinical health workers to not only improve communication, but also strengthen cooperation. Users will find valuable tactics they can use to build a systematic framework for understanding the role of NGS testing in both common and rare diseases and conditions, from prenatal care, like chromosomal abnormalities, up to advanced age problems like dementia. - Fills the gap between state-of-the-art technology and evidence-based practice - Provides an educational opportunity which advances patient care through the transfer of NGS to real-world patient assessment - Promotes a practical tool that clinicians can apply directly to patient care - Includes a systematic framework for understanding the role of NGS testing in many common and rare diseases - Presents evidence regarding the important role of NGS in current diagnostic strategies




Clinical Precision Medicine


Book Description

Clinical Precision Medicine: A Primer offers clinicians, researchers and students a practical, up-to-date resource on precision medicine, its evolving technologies, and pathways towards clinical implementation. Early chapters address the fundamentals of molecular biology and gene regulation as they relate to precision medicine, as well as the foundations of heredity and epigenetics. Oncology, an early adopter of precision approaches, is considered with its relationship to genetic variation in drug metabolism, along with tumor immunology and the impact of DNA variation in clinical care. Contributions by Stephanie Kramer, a Clinical Genetic Counselor, also provide current information on prenatal diagnostics and adult genetics that highlight the critical role of genetic counselors in the era of precision medicine. - Includes applied discussions of chromosomes and chromosomal abnormalities, molecular genetics, epigenetic regulation, heredity, clinical genetics, pharmacogenomics and immunogenomics - Features chapter contributions from leaders in the field - Consolidates fundamental concepts and current practices of precision medicine in one convenient resource




Assessing Genetic Risks


Book Description

Raising hopes for disease treatment and prevention, but also the specter of discrimination and "designer genes," genetic testing is potentially one of the most socially explosive developments of our time. This book presents a current assessment of this rapidly evolving field, offering principles for actions and research and recommendations on key issues in genetic testing and screening. Advantages of early genetic knowledge are balanced with issues associated with such knowledge: availability of treatment, privacy and discrimination, personal decision-making, public health objectives, cost, and more. Among the important issues covered: Quality control in genetic testing. Appropriate roles for public agencies, private health practitioners, and laboratories. Value-neutral education and counseling for persons considering testing. Use of test results in insurance, employment, and other settings.




Clinical Genomics


Book Description

Clinical Genomics provides an overview of the various next-generation sequencing (NGS) technologies that are currently used in clinical diagnostic laboratories. It presents key bioinformatic challenges and the solutions that must be addressed by clinical genomicists and genomic pathologists, such as specific pipelines for identification of the full range of variants that are clinically important. This book is also focused on the challenges of diagnostic interpretation of NGS results in a clinical setting. Its final sections are devoted to the emerging regulatory issues that will govern clinical use of NGS, and reimbursement paradigms that will affect the way in which laboratory professionals get paid for the testing. - Simplifies complexities of NGS technologies for rapid education of clinical genomicists and genomic pathologists towards genomic medicine paradigm - Tried and tested practice-based analysis for precision diagnosis and treatment plans - Specific pipelines and meta-analysis for full range of clinically important variants




Next-Generation Sequencing Data Analysis


Book Description

A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi




Precision Cancer Medicine


Book Description

Genomic sequencing technologies have augmented the classification of cancer beyond tissue of origin and towards a molecular taxonomy of cancer. This has created opportunities to guide treatment decisions for individual patients with cancer based on their cancer’s unique molecular characteristics, also known as precision cancer medicine. The purpose of this text will be to describe the contribution and need for multiple disciplines working together to deliver precision cancer medicine. This entails a multi-disciplinary approach across fields including molecular pathology, computational biology, clinical oncology, cancer biology, drug development, genetics, immunology, and bioethics. Thus, we have outlined a current text on each of these fields as they work together to overcome various challenges and create opportunities to deliver precision cancer medicine. As trainees and junior faculty enter their respective fields, this text will provide a framework for understanding the role and responsibility for each specialist to contribute to this team science approach.




Genomic Applications in Pathology


Book Description

​The recent advances in genomics are continuing to reshape our approach to diagnostics, prognostics and therapeutics in oncologic and other disorders. A paradigm shift in pharmacogenomics and in the diagnosis of genetic inherited diseases and infectious diseases is unfolding as the result of implementation of next generation genomic technologies. With rapidly growing knowledge and applications driving this revolution, along with significant technologic and cost changes, genomic approaches are becoming the primary methods in many laboratories and for many diseases. As a result, a plethora of clinical genomic applications have been implemented in diagnostic pathology laboratories, and the applications and demands continue to evolve rapidly. This has created a tremendous need for a comprehensive resource on genomic applications in clinical and anatomic pathology. We believe that our current textbook provides such a resource to practicing molecular pathologists, hematopathologists and other subspecialized pathologists, general pathologists, pathology and other trainees, oncologists, geneticists and a growing spectrum of other clinicians. With periodic updates and a sufficiently rapid time from submission to publication, this textbook will be the resource of choice for many professionals and teaching programs. Its focus on genomics parallels the evolution of these technologies as primary methods in the clinical lab. The rapid evolution of genomics and its applications in medicine necessitates the (frequent) updating of this publication. This text will provide a state-of-the art review of the scientific principles underlying next generation genomic technologies and the required bioinformatics approaches to analyses of the daunting amount of data generated by current and emerging genomic technologies. Implementation roadmaps for various clinical assays such as single gene, gene panels, whole exome and whole genome assays will be discussed together with issues related to reporting and the pathologist’s role in interpretation and clinical integration of genomic tests results. Genomic applications for site-specific solid tumors and hematologic neoplasms will be detailed. Genomic applications in pharmacogenomics, inherited genetic diseases and infectious diseases will also be discussed. The latest iteration of practice recommendations or guidelines in genomic testing put forth by stakeholder professional organizations such as the College of American Pathology and the Association for Molecular Pathology, will be discussed as well as regulatory issues and laboratory accreditation related to genomic testing. All chapters will be written by experts in their fields and will include the most up to date scientific and clinical information.