Clocking in Modern VLSI Systems


Book Description

. . . ????????????????????????????????? ????????????? ????????????,????? ???? ??????????? ???????????????????? ???. THUCYDIDIS HISTORIAE IV:108 C. Hude ed. , Teubner, Lipsiae MCMXIII ???????????,????? ??,? ????????????????? ???????????????????? ?????? ?????? ?????? ??? ????????? ??? ?’ ?????????? ??’ ?????????? ? ??????? ??? ????????????? ???????. ???????????????????:108 ???????????? ?????????????????????? ?. ?????????????. ????????????,????? It being the fashion of men, what they wish to be true to admit even upon an ungrounded hope, and what they wish not, with a magistral kind of arguing to reject. Thucydides (the Peloponnesian War Part I), IV:108 Thomas Hobbes Trans. , Sir W. Molesworth ed. In The English Works of Thomas Hobbes of Malmesbury, Vol. VIII I have been introduced to clock design very early in my professional career when I was tapped right out of school to design and implement the clock generation and distribution of the Alpha 21364 microprocessor. Traditionally, Alpha processors - hibited highly innovative clocking systems, always worthy of ISSCC/JSSC publi- tions and for a while Alpha processors were leading the industry in terms of clock performance. I had huge shoes to ?ll. Obviously, I was overwhelmed, confused and highly con?dent that I would drag the entire project down.




Clocking in Modern VLSI Systems


Book Description

. . . ????????????????????????????????? ????????????? ????????????,????? ???? ??????????? ???????????????????? ???. THUCYDIDIS HISTORIAE IV:108 C. Hude ed. , Teubner, Lipsiae MCMXIII ???????????,????? ??,? ????????????????? ???????????????????? ?????? ?????? ?????? ??? ????????? ??? ?’ ?????????? ??’ ?????????? ? ??????? ??? ????????????? ???????. ???????????????????:108 ???????????? ?????????????????????? ?. ?????????????. ????????????,????? It being the fashion of men, what they wish to be true to admit even upon an ungrounded hope, and what they wish not, with a magistral kind of arguing to reject. Thucydides (the Peloponnesian War Part I), IV:108 Thomas Hobbes Trans. , Sir W. Molesworth ed. In The English Works of Thomas Hobbes of Malmesbury, Vol. VIII I have been introduced to clock design very early in my professional career when I was tapped right out of school to design and implement the clock generation and distribution of the Alpha 21364 microprocessor. Traditionally, Alpha processors - hibited highly innovative clocking systems, always worthy of ISSCC/JSSC publi- tions and for a while Alpha processors were leading the industry in terms of clock performance. I had huge shoes to ?ll. Obviously, I was overwhelmed, confused and highly con?dent that I would drag the entire project down.




VLSI Physical Design: From Graph Partitioning to Timing Closure


Book Description

Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. "VLSI Physical Design: From Graph Partitioning to Timing Closure" introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.




Three-Dimensional Integrated Circuit Design


Book Description

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization




Modern VLSI Design


Book Description

For Electrical Engineering and Computer Engineering courses that cover the design and technology of very large scale integrated (VLSI) circuits and systems. May also be used as a VLSI reference for professional VLSI design engineers, VLSI design managers, and VLSI CAD engineers. Modern VSLI Design provides a comprehensive “bottom-up” guide to the design of VSLI systems, from the physical design of circuits through system architecture with focus on the latest solution for system-on-chip (SOC) design. Because VSLI system designers face a variety of challenges that include high performance, interconnect delays, low power, low cost, and fast design turnaround time, successful designers must understand the entire design process. The Third Edition also provides a much more thorough discussion of hardware description languages, with introduction to both Verilog and VHDL. For that reason, this book presents the entire VSLI design process in a single volume.




VLSI


Book Description

The process of Integrated Circuits (IC) started its era of VLSI (Very Large Scale Integration) in 1970’s when thousands of transistors were integrated into one single chip. Nowadays we are able to integrate more than a billion transistors on a single chip. However, the term “VLSI” is still being used, though there was some effort to coin a new term ULSI (Ultra-Large Scale Integration) for fine distinctions many years ago. VLSI technology has brought tremendous benefits to our everyday life since its occurrence. VLSI circuits are used everywhere, real applications include microprocessors in a personal computer or workstation, chips in a graphic card, digital camera or camcorder, chips in a cell phone or a portable computing device, and embedded processors in an automobile, et al. VLSI covers many phases of design and fabrication of integrated circuits. For a commercial chip design, it involves system definition, VLSI architecture design and optimization, RTL (register transfer language) coding, (pre- and post-synthesis) simulation and verification, synthesis, place and route, timing analyses and timing closure, and multi-step semiconductor device fabrication including wafer processing, die preparation, IC packaging and testing, et al. As the process technology scales down, hundreds or even thousands of millions of transistors are integrated into one single chip. Hence, more and more complicated systems can be integrated into a single chip, the so-called System-on-chip (SoC), which brings to VLSI engineers ever increasingly challenges to master techniques in various phases of VLSI design. For modern SoC design, practical applications are usually speed hungry. For instance, Ethernet standard has evolved from 10Mbps to 10Gbps. Now the specification for 100Mbps Ethernet is on the way. On the other hand, with the popularity of wireless and portable computing devices, low power consumption has become extremely critical. To meet these contradicting requirements, VLSI designers have to perform optimizations at all levels of design. This book is intended to cover a wide range of VLSI design topics. The book can be roughly partitioned into four parts. Part I is mainly focused on algorithmic level and architectural level VLSI design and optimization for image and video signal processing systems. Part II addresses VLSI design optimizations for cryptography and error correction coding. Part III discusses general SoC design techniques as well as other application-specific VLSI design optimizations. The last part will cover generic nano-scale circuit-level design techniques.




Flip-Flop Design in Nanometer CMOS


Book Description

This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gain an insight into the inter-dependence of design parameters under practical constraints. This book serves as a valuable reference for practicing engineers working in the VLSI design area, and as text book for senior undergraduate, graduate and postgraduate students (already familiar with digital circuits and timing).




Stabilization, Safety, and Security of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 22nd International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2020, held in Austin, TX, USA, in November 2020. The 16 full papers, 7 short and 2 invited papers presented were carefully reviewed and selected from 44 submissions. The papers deal with the design and development of distributed systems with a focus on systems that are able to provide guarantees on their structure, performance, and/or security in the face of an adverse operational environment.




Digital System Clocking


Book Description

Provides the only up-to-date source on the most recent advances in this often complex and fascinating topic. The only book to be entirely devoted to clocking Clocking has become one of the most important topics in the field of digital system design A "must have" book for advanced circuit engineers




CMOS Test and Evaluation


Book Description

CMOS Test and Evaluation: A Physical Perspective is a single source for an integrated view of test and data analysis methodology for CMOS products, covering circuit sensitivities to MOSFET characteristics, impact of silicon technology process variability, applications of embedded test structures and sensors, product yield, and reliability over the lifetime of the product. This book also covers statistical data analysis and visualization techniques, test equipment and CMOS product specifications, and examines product behavior over its full voltage, temperature and frequency range.