Option Pricing in Incomplete Markets


Book Description

This volume offers the reader practical methods to compute the option prices in the incomplete asset markets. The [GLP & MEMM] pricing models are clearly introduced, and the properties of these models are discussed in great detail. It is shown that the geometric L(r)vy process (GLP) is a typical example of the incomplete market, and that the MEMM (minimal entropy martingale measure) is an extremely powerful pricing measure. This volume also presents the calibration procedure of the [GLP \& MEMM] model that has been widely used in the application of practical problem




Handbooks in Operations Research and Management Science: Financial Engineering


Book Description

The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.




A Stochastic Control Framework for Real Options in Strategic Evaluation


Book Description

The theoretical foundation for real options goes back to the mid 1980s and the development of a model that forms the basis for many current applications of real option theory. Over the last decade the theory has rapidly expanded and become enriched thanks to increasing research activity. Modern real option theory may be used for the valuation of entire companies as well as for particular investment projects in the presence of uncertainty. As such, the theory of real options can serve as a tool for more practically oriented decision making, providing management with strategies maximizing its capital market value. This book is devoted to examining a new framework for classifying real options from a management and a valuation perspective, giving the advantages and disadvantages of the real option approach. Impulse control theory and the theory of optimal stopping combined with methods of mathematical finance are used to construct arbitrarily complex real option models which can be solved numerically and which yield optimal capital market strategies and values. Various examples are given to demonstrate the potential of this framework. This work will benefit the financial community, companies, as well as academics in mathematical finance by providing an important extension of real option research from both a theoretical and practical point of view.




Numerical Methods in Finance


Book Description

Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.




Asset Pricing and Portfolio Choice Theory


Book Description

This book covers the classical results on single-period, discrete-time, and continuous-time models of portfolio choice and asset pricing. It also treats asymmetric information, production models, various proposed explanations for the equity premium puzzle, and topics important for behavioral finance.




Arbitrage Theory in Continuous Time


Book Description

The fourth edition of this widely used textbook on pricing and hedging of financial derivatives now also includes dynamic equilibrium theory and continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous time arbitrage pricing of financial derivatives, including stochastic optimal control theory and optimal stopping theory, Arbitrage Theory in Continuous Time is designed for graduate students in economics and mathematics, and combines the necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter. All concepts and ideas are discussed, not only from a mathematics point of view, but with lots of intuitive economic arguments. In the substantially extended fourth edition Tomas Bjork has added completely new chapters on incomplete markets, treating such topics as the Esscher transform, the minimal martingale measure, f-divergences, optimal investment theory for incomplete markets, and good deal bounds. This edition includes an entirely new section presenting dynamic equilibrium theory, covering unit net supply endowments models and the Cox-Ingersoll-Ross equilibrium factor model. Providing two full treatments of arbitrage theory-the classical delta hedging approach and the modern martingale approach-this book is written so that these approaches can be studied independently of each other, thus providing the less mathematically-oriented reader with a self-contained introduction to arbitrage theory and equilibrium theory, while at the same time allowing the more advanced student to see the full theory in action. This textbook is a natural choice for graduate students and advanced undergraduates studying finance and an invaluable introduction to mathematical finance for mathematicians and professionals in the market.




Financial Modelling with Jump Processes


Book Description

WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic




Copula Methods in Finance


Book Description

Copula Methods in Finance is the first book to address the mathematics of copula functions illustrated with finance applications. It explains copulas by means of applications to major topics in derivative pricing and credit risk analysis. Examples include pricing of the main exotic derivatives (barrier, basket, rainbow options) as well as risk management issues. Particular focus is given to the pricing of asset-backed securities and basket credit derivative products and the evaluation of counterparty risk in derivative transactions.




Risk-Neutral Valuation


Book Description

This second edition - completely up to date with new exercises - provides a comprehensive and self-contained treatment of the probabilistic theory behind the risk-neutral valuation principle and its application to the pricing and hedging of financial derivatives. On the probabilistic side, both discrete- and continuous-time stochastic processes are treated, with special emphasis on martingale theory, stochastic integration and change-of-measure techniques. Based on firm probabilistic foundations, general properties of discrete- and continuous-time financial market models are discussed.




Numerical Methods in Finance


Book Description

Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.