Cluster Ion-Solid Interactions


Book Description

Cluster Ion-Solid Interactions: Theory, Simulation, and Experiment provides an overview of various concepts in cluster physics and related topics in physics, including the fundamentals and tools underlying novel cluster ion beam technology. The material is based on the author's highly regarded courses at Kyoto University, Purdue University, the Mos




Ion-Solid Interactions


Book Description

Comprehensive guide to an important materials science technique for students and researchers.




Ion-Solid Interactions for Materials Modification and Processing: Volume 396


Book Description

Several beam-solid interaction techniques have been developed that can either stand alone or be used in connection with others for materials processing, for fabrication of devices with enhanced electro-optical and mechanical properties, and with enhanced resistance to corrosion and erosion. For example, advances in focused ion beams (FIB) have brought out-of-reach ideas and applications to fruition. This book from MRS focuses on the developments in ion-beam-assisted processing of materials and reviews successful applications of the techniques. Topics include: fundamentals of ion-solid interactions; ion-beam mixing; radiation damage; insulators and wide bandgap materials; polymers; optical materials; plasma and ion-assisted techniques; metals and tribology; focused ion beams; fundamental semiconductor processing and compound semiconductors.




Ion-solid Interactions


Book Description




Materials Processing by Cluster Ion Beams


Book Description

Materials Processing by Cluster Ion Beams: History, Technology, and Applications discusses the contemporary physics, materials science, surface engineering issues, and nanotechnology capabilities of cluster beam processing. Written by the originator of the gas cluster ion beam (GCIB) concept, this book:Offers an overview of ion beam technologies, f




Ion Beam Modification of Materials


Book Description

This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in a range of host matrices, particularly for opto-electronics applications, was one especially new and exciting development. Despite several decades of study, major progress was reported at the conference in understanding defect evolution in semiconductors and the role of defects in transient impurity diffusion. The use of implantation to tune or isolate optical devices and in forming optically active centres and waveguides in semiconductors, polymers and oxide ceramics was a major focus of several presentations at the conference. The formation of hard coatings by ion assisted deposition or direct implantation was also an area which showed much recent progress. Ion beam techniques had also developed apace, particularly those based on plasma immersion ion implantation or alternative techniques for large area surface treatment. Finally, the use of ion beams for the direct treatment of cancerous tissue was a particularly novel and interesting application of ion beams.




Novel Materials Processing by Advanced Electromagnetic Energy Sources


Book Description

Proceedings of the International Symposium in Novel Materials Processing by Advanced Electromagnetic Energy Sources (MAPEES'04)*Identifies and details recent progress achieved by advanced electromagnetic energy sources in materials processing.*Explores novel approaches to advanced electromagnetic energy processing of materials in an attempt to discover new and unique industrial fields.




Low Energy Particle Accelerator-Based Technologies and Their Applications


Book Description

Low Energy Particle Accelerator-Based Technologies and Their Applications describes types of low energy accelerators, presents some of the main manufacturers, illustrates some of the accelerator laboratories around the globe and shows examples of successful transfers of accelerators to needed laboratories. Key Features: Presents new trends and the state of the art in a field that's growing Provides an overview of numerous applications of such accelerators in medicine, industry, earth sciences, nuclear non-proliferation and oil Fills a gap, with the author drawing on his own experiences with transporting such relatively large machines from one lab to the other that require a tremendous amount of planning, technical and engineering efforts This is an essential reference for advanced students as well as for physicists, engineers and practitioners in accelerator science. About the Author Dr. Vladivoj (Vlado) Valković, a retired professor of physics, is a fellow of the American Physical Society and Institute of Physics (London). He has authored 22 books (from Trace Elements, Taylor & Francis, 1975, to Radioactivity in the Environment, Elsevier, 1st Edition 2001, 2nd Edition 2019), and more than 400 scientific and technical papers in the research areas of nuclear physics, applications of nuclear techniques to trace element analysis in biology, medicine and environmental research. He has lifelong experience in the study of nuclear reactions induced by 14 MeV neutrons. This research has been done through coordination and works on many national and international projects, including US-Croatia bilateral, NATO, IAEA, EU-FP5, FP6 and FP7 projects. Cover photo credit: 3SDH 1 MV Pelletron system with RF source and analysis endstation designed with the intended purpose of aiding in fusion research. It is capable of Ion Beam Analysis (IBA) techniques such as RBS, ERD, PIXE and NRA. Further detectors could be added to the endstation to allow for other techniques. Installed in Japan in 2014. Courtesy of National Electrostatics Corp.




Ion Beam Processing of Materials and Deposition Processes of Protective Coatings


Book Description

Containing the proceedings of three symposia in the E-MRS series this book is divided into two parts. Part one is concerned with ion beam processing, a particularly powerful and versatile technology which can be used both to synthesise and modify materials, including metals, semiconductors, ceramics and dielectrics, with great precision and excellent control. Furthermore it also deals with the correlated effects in atomic and cluster ion bombardment and implantation.Part two deals with the deposition techniques, characterization and applications of advanced ceramic, metallic and polymeric coatings or thin films for surface protection against corrosion, erosion, abrasion, diffusion and for lubrication of contracting surfaces in relative motion.




State-of-the-art Reviews On Energetic Ion-atom And Ion-molecule Collisions


Book Description

This book is based upon a part of the invited and contributing talks at the 25th International Symposium on Ion-Atom Collisions, ISIAC (biennial), held on July 23-25, 2017 in Palm Cove, Queensland, Australia. To aid the general reader, all the authors tried to present their chapters in the context of the development of the addressed particular themes and the underlying major ideas and intricacies. Some chapters contain new results that have not been previously published elsewhere. Whenever possible, the authors made their attempts to connect the basic research in atomic and molecular collision physics with some important applications in other branches of physics as well as across the physics borders. It is hoped that the material presented in this book will be interesting and useful to the beginners and specialists alike. The contents and expositions are deemed to be helpful to the beginners in assessing the potential overlap of some of the presented material with their own research themes and this might provide motivations for possible further upgrades. Likewise, specialists could take advantage of these reviews to see where the addressed themes were and where they are going, in order to acknowledge the fruits of the efforts made thus far and actively contribute to tailoring the directions of future research. Overall, this book is truly interdisciplinary. It judiciously combines experiments and theories within particle collision physics on atomic and molecular levels. It presents state-of-the-art fundamental research in this field. It addresses the possibilities for significant and versatile applications outside standard atomic and molecular collision physics ranging from astrophysics, surface as well as cluster physics/chemistry, hadron therapy in medicine and to the chemical industry. It is then, as Volume 2, fully in the spirit of the 'Aims and Scope' of this book series by reference to its 'Mission Statement'.