Clustering Neutrosophic Data Sets and Neutrosophic Valued Metric Spaces


Book Description

In this paper, we define the neutrosophic valued (and generalized or G) metric spaces for the first time. Besides, we newly determine a mathematical model for clustering the neutrosophic big data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and weighted cohesion measure, is defined for neutrosophic big data set. We offer a very practical method for data analysis of neutrosophic big data although neutrosophic data type (neutrosophic big data) are in massive and detailed form when compared with other data types.




Clustering Neutrosophic Data Sets and Neutrosophic Valued Metric Spaces


Book Description

In this paper, we define the neutrosophic valued (and generalized or G) metric spaces for the first time. Besides, we newly determine a mathematical model for clustering the neutrosophic big data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and weighted cohesion measure, is defined for neutrosophic big data set. We offer a very practical method for data analysis of neutrosophic big data although neutrosophic data type (neutrosophic big data) are in massive and detailed form when compared with other data types.




Collected Papers. Volume XIII


Book Description

This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.




Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume II


Book Description

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.




International Journal of Neutrosophic Science (IJNS) Volume 12, 2020


Book Description

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.




Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets


Book Description

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.




Collected Papers. Volume IX


Book Description

This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.




Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I


Book Description

Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.




Neutrosophic Sets and Systems, Vol. 27, 2019


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles from this issue: BMBJ-neutrosophic ideals in BCK/BCI-algebras, Neutrosophic General Finite Automata, Generalized Neutrosophic Exponential map, Implementation of Neutrosophic Function Memberships Using MATLAB Program.




Neutrosophic Sets and Systems, Book Series, Vol. 27, 2019


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.