Management and Effects of Coalbed Methane Produced Water in the Western United States


Book Description

In some coalbeds, naturally occurring water pressure holds methane-the main component of natural gas-fixed to coal surfaces and within the coal. In a coalbed methane (CBM) well, pumping water from the coalbeds lowers this pressure, facilitating the release of methane from the coal for extraction and use as an energy source. Water pumped from coalbeds during this process-CBM 'produced water'-is managed through some combination of treatment, disposal, storage, or use, subject to compliance with federal and state regulations. CBM produced water management can be challenging for regulatory agencies, CBM well operators, water treatment companies, policy makers, landowners, and the public because of differences in the quality and quantity of produced water; available infrastructure; costs to treat, store, and transport produced water; and states' legal consideration of water and produced water. Some states consider produced water as waste, whereas others consider it a beneficial byproduct of methane production. Thus, although current technologies allow CBM produced water to be treated to any desired water quality, the majority of CBM produced water is presently being disposed of at least cost rather than put to beneficial use. This book specifically examines the Powder River, San Juan, Raton, Piceance, and Uinta CBM basins in the states of Montana, Wyoming, Colorado, New Mexico, and Utah. The conclusions and recommendations identify gaps in data and information, potential beneficial uses of CBM produced water and associated costs, and challenges in the existing regulatory framework.




Management and Effects of Coalbed Methane Produced Water in the Western United States


Book Description

In some coalbeds, naturally occurring water pressure holds methane-the main component of natural gas-fixed to coal surfaces and within the coal. In a coalbed methane (CBM) well, pumping water from the coalbeds lowers this pressure, facilitating the release of methane from the coal for extraction and use as an energy source. Water pumped from coalbeds during this process-CBM 'produced water'-is managed through some combination of treatment, disposal, storage, or use, subject to compliance with federal and state regulations. CBM produced water management can be challenging for regulatory agencies, CBM well operators, water treatment companies, policy makers, landowners, and the public because of differences in the quality and quantity of produced water; available infrastructure; costs to treat, store, and transport produced water; and states' legal consideration of water and produced water. Some states consider produced water as waste, whereas others consider it a beneficial byproduct of methane production. Thus, although current technologies allow CBM produced water to be treated to any desired water quality, the majority of CBM produced water is presently being disposed of at least cost rather than put to beneficial use. This book specifically examines the Powder River, San Juan, Raton, Piceance, and Uinta CBM basins in the states of Montana, Wyoming, Colorado, New Mexico, and Utah. The conclusions and recommendations identify gaps in data and information, potential beneficial uses of CBM produced water and associated costs, and challenges in the existing regulatory framework.




Regulatory Issues Affecting Management of Produced Water from Coal Bed Methane Wells


Book Description

Coal bed methane (CBM) wells are being developed in increasing numbers throughout the United States. These are wells that are drilled into coal seams to withdraw ground water (produced water) to reduce the hydrostatic pressure on the coal seam. The reduced pressure allows methane gas to migrate to the well bore where it moves to the surface and is collected. Where possible, operators prefer to discharge the produced water into nearby streams, rivers, or other surface water bodies. Depending on the chemical characteristics of the produced water, different levels of treatment are applied to the produced water before discharge. In some locations, produced water cannot be discharged and is injected, reused, or evaporated. Although the CBM industry is producing ''natural'' gas, such gas may not necessarily be covered under the existing national regulations for discharges from the oil and gas industry. This paper describes the existing national discharge regulations, the ways in which CBM produced water is currently being managed, the current CBM discharge permitting practices, and how these options might change as the volume of produced water increases because of the many new wells being developed.




Coal Bed Methane


Book Description

Coal Bed Methane: From Prospect to Pipeline is the proceedings of the 25th anniversary of the North American Coal Bed Methane Forum. It provides the latest advancements in the production of coal bed methane covering a variety of topics, from exploration to gas processing, for commercial utilization. Additionally, it presents the origin of gas in coal, reservoir engineering, control of methane in coal mines, production techniques, water management, and gas processing. The vast coal resources in the United States continue to produce tremendous amounts of natural gas, contributing to a diverse range energy assets. Following a rapid advancement and subsequent plateau in technological developments, this book captures the full life cycle of a well and offers petroleum geologists and engineers a single source of a broad range of coal bed methane applications. This book addresses crucial technical topics, including exploration and evaluation of coal bed reservoirs; hydraulic fracturing of CBM wells; coal seam degasification; and production engineering and processing, among others. It also covers legal issues, permitting, and economic analysis of CBM projects. Edited by a team of coal bed methane experts from industry, academia and government who have more than 75 years of combined experience in the field Authored by well-recognized members of the gas and coal industry, universities, US government departments, such as the Department of Energy and the National Institute of Occupational Safety and Health (NIOSH) More than 200 figures, photographs, and illustrations aid in the understanding of the fundamental concepts Presents the full scope of improvements in US energy independence, coal mine safety, and greenhouse gas emissions




Advanced Reservoir and Production Engineering for Coal Bed Methane


Book Description

Advanced Reservoir and Production Engineering for Coal Bed Methane presents the reader with design systems that will maximize production from worldwide coal bed methane reservoirs. Authored by an expert in the field with more than 40 years of’ experience, the author starts with much needed introductory basics on gas content and diffusion of gas in coal, crucial for anyone in the mining and natural gas industries. Going a step further, chapters on hydrofracking, horizontal drilling technology, and production strategies address the challenges of dewatering, low production rates, and high development costs. This book systematically addresses all three zones of production levels, shallow coal, medium depth coal, and deep coal with coverage on gas extraction and production from a depth of 500 feet to upwards of 10,000 feet, strategies which cannot be found in any other reference book. In addition, valuable content on deep coal seams with content on enhanced recovery, a discussion on CO2 flooding, infra-red heating and even in-situ combustion of degassed coal, giving engineers a greater understanding on how today’s shale activities can aid in enhancing production of coal bed for future natural gas production. Delivers how to recover and degas deeper coal seams while lowering development costs Addresses both sorption process and irreducible fraction of gas in coal, with examples based on the author’s 40 plus years of direct experience Explains how the same techniques used for production from deep shale activity can produce gas from deep coal seems with the help of enhanced recovery, leading to increased gas production




Assessments of Environmental Impacts and Beneficial Use of Coalbed Methane Produced Water in the Powder River Basin


Book Description

Impact on water quality and the beneficial use of the coal bed methane (CBM) produced water are imminent questions to be answered due to the rapidly growing CBM exploration in the Powder River Basin (PRB). The practice of discharging large volumes of water into drainage channels or using it to irrigate rangeland areas has the potential of causing serious problems. The elevated salinity and sodicity in the CBM water may be detrimental to soils, plants and the associated microbial communities. There are limited studies on CBM water characterization; however, a comprehensive understanding of CBM water influence on the local ecosystem is lacking. It is very important that the water applied to soils meets the favorable combination of salinity and sodicity that will allow the plants to grow at good production levels and that will maintain the structure of the soils. The purpose of this study was to access various CBM water treatment technologies and the influence of the treated water on local biogeochemical settings in order to evaluate and identify the proper technologies to treat the CBM produced water from CBM operations, and use it in an environmentally safe manner. Unfortunately, a suitable field site was not identified and the funds for this effort were moved to a different project.










Coalbed Natural Gas Conference I


Book Description

Research, Monitoring, and Applications: [August 17-19, 2004, Wyoming Union, University of Wyoming, Laramie, Wyoming]