Solar Thermal Energy Storage


Book Description

Energy Storage not only plays an important role in conservinq the energy but also improves the performance and reliability of a wide range of energy systems. Energy storagp. leads to saving of premium fuels and makes the system morA cost effective by reducing the wastage of energy. In most systems there is a mismatch between the energy supply and energy demand. The energy storage can even out this imbalance and thereby help in savings of capital costs. Enerqy storage is all the more important where the enerqy source is intermittent such as Solar Energy. The use of jntermittent energy sources is likely to grow. If more and more solar energy is to be used for domestic and industrial applications then energy storage is very crucial. If no storage is used in solar energy systems then the major part of the energy demand will be met by the back-up or auxiliary energy and therefore the so called annual solar load fract]on will be very low. In case of solar energy, both short term and long term energy storage systems can be used whjch can adjust the phase difference between solar energy supply and energy demand and can match seasonal demands to the solar availability respectively. Thermal energy storage can lead to capital cost savings, fuel savjngs, and fuel substitution in many application areas. Developing an optimum thermal storaqe system is as important an area of research as developinq an alternative source of energy.







Materials Challenges in Alternative and Renewable Energy


Book Description

This useful, one-stop resource for understanding the most important issues in materials challenges in alternative and renewable energy. The logically organized and carefully selected articles give insight into materials challenges in alternative renewable energy and incorporate the latest developments related to materials challenges in alternative renewable energy, including hydrogen, batteries and energy storage materials, hydropower, and biomass.




Advances in the Toxicity of Construction and Building Materials


Book Description

Advances in the Toxicity of Construction and Building Materials presents the potential and toxic effects of building materials on human health, along with tactics on how to minimize exposure. Chapters are divided into four sections covering the toxicity of indoor environments, fire toxicity, radioactive materials, and toxicity from plastics, metals, asbestos, nanoparticles and construction wastes. Key chapters focus on the reduction of chemical emissions in houses with eco-labelled building materials and potential risks posed by indoor pollutants that may include volatile organic compounds (VOC), formaldehyde, semi-volatile organic compounds (SVOC), radon, NOx, asbestos and nanoparticles. Known illnesses and reactions that can be triggered by these toxic building materials include asthma, itchiness, burning eyes, skin irritations or rashes, nose and throat irritation, nausea, headaches, dizziness, fatigue, reproductive impairment, disruption of the endocrine system, impaired child development and birth defects, immune system suppression, and even cancer. - Provides an essential guide to the potential toxic effects of building materials on human health - Comprehensively examines materials responsible for formaldehyde and volatile organic compound emissions, as well as semi-volatile organic compounds - Presents coverage on fire toxicity and an evaluation of the radioactivity of building materials - Includes several cases studies throughout and addresses current international standards




ERDA Energy Research Abstracts


Book Description










Fossil Energy Update


Book Description