Cognitive Big Data Intelligence with a Metaheuristic Approach


Book Description

Cognitive Big Data Intelligence with a Metaheuristic Approach presents an exact and compact organization of content relating to the latest metaheuristics methodologies based on new challenging big data application domains and cognitive computing. The combined model of cognitive big data intelligence with metaheuristics methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues in real-time. Various real-time case studies and implemented works are discussed in this book for better understanding and additional clarity. This book presents an essential platform for the use of cognitive technology in the field of Data Science. It covers metaheuristic methodologies that can be successful in a wide variety of problem settings in big data frameworks. - Provides a unique opportunity to present the work on the state-of-the-art of metaheuristics approach in the area of big data processing developing automated and intelligent models - Explains different, feasible applications and case studies where cognitive computing can be successfully implemented in big data analytics using metaheuristics algorithms - Provides a snapshot of the latest advances in the contribution of metaheuristics frameworks in cognitive big data applications to solve optimization problems




Era of Artificial Intelligence


Book Description

This text has attempted to collate quality research articles ranging from A Mathematical Disposition for Neural Nets, to Cognitive Computing, to Quantum Machine Learning, to a Multimodal Emotion Recognition System, to Responsible AI, to AI for Accessibility and Inclusion, to Artificial-Enabled Intelligence Enabled Applications in the sectors of Health, Pharma and Education. Features Focus on AI research and interdisciplinary research that exhibits AI inclusion to a greater degree Focus on application of disruptive technology in the context of the twenty-first century human and machine approach Focus on role of disruptive technology such as cognitive computing, quantum machine learning, IOT enabled-recognition systems Focus on unravelling the powerful features of artificial intelligence for societal benefits including accessibility This volume will cater as a ready reference to an individual’s quest for deep diving into the ocean of artificial intelligence-enabled solution approaches. The book will serve as a useful reference for researchers, innovators, academicians, entrepreneurs, and professionals aspiring to gain expertise in the domain of cognitive and quantum computing, IOT-enabled intelligent systems and so on.







Predictive Analytics in Cloud, Fog, and Edge Computing


Book Description

This book covers the relationship of recent technologies (such as Blockchain, IoT, and 5G) with the cloud computing as well as fog computing, and mobile edge computing. The relationship will not be limited to only architecture proposal, trends, and technical advancements. However, the book also explores the possibility of predictive analytics in cloud computing with respect to Blockchain, IoT, and 5G. The recent advancements in the internet-supported distributed computing i.e. cloud computing, has made it possible to process the bulk amount of data in a parallel and distributed. This has made it a lucrative technology to process the data generated from technologies such as Blockchain, IoT, and 5G. However, there are several issues a Cloud Service Provider (CSP) encounters, such as Blockchain security in cloud, IoT elasticity and scalability management in cloud, Service Level Agreement (SLA) compliances for 5G, Resource management, Load balancing, and Fault-tolerance. This edited book will discuss the aforementioned issues in connection with Blockchain, IoT, and 5G. Moreover, the book discusses how the cloud computing is not sufficient and one needs to use fog computing, and edge computing to efficiently process the data generated from IoT, and 5G. Moreover, the book shows how smart city, smart healthcare system, and smart communities are few of the most relevant IoT applications where fog computing plays a significant role. The book discusses the limitation of fog computing and the need for the edge computing to further reduce the network latency to process streaming data from IoT devices. The book also explores power of predictive analytics of Blockchain, IoT, and 5G data in cloud computing with its sister technologies. Since, the amount of resources increases day-by day, artificial intelligence (AI) tools are becoming more popular due to their capability which can be used in solving wide variety of issues, such as minimize the energy consumption of physical servers, optimize the service cost, improve the quality of experience, increase the service availability, efficiently handle the huge data flow, manages the large number of IoT devices, etc.




Cognitive Intelligence and Big Data in Healthcare


Book Description

COGNITIVE INTELLIGENCE AND BIG DATA IN HEALTHCARE Applications of cognitive intelligence, advanced communication, and computational methods can drive healthcare research and enhance existing traditional methods in disease detection and management and prevention. As health is the foremost factor affecting the quality of human life, it is necessary to understand how the human body is functioning by processing health data obtained from various sources more quickly. Since an enormous amount of data is generated during data processing, a cognitive computing system could be applied to respond to queries, thereby assisting in customizing intelligent recommendations. This decision-making process could be improved by the deployment of cognitive computing techniques in healthcare, allowing for cutting-edge techniques to be integrated into healthcare to provide intelligent services in various healthcare applications. This book tackles all these issues and provides insight into these diversified topics in the healthcare sector and shows the range of recent innovative research, in addition to shedding light on future directions in this area. Audience The book will be very useful to a wide range of specialists including researchers, engineers, and postgraduate students in artificial intelligence, bioinformatics, information technology, as well as those in biomedicine.




Artificial Intelligence for Cognitive Modeling


Book Description

This book is written in a clear and thorough way to cover both the traditional and modern uses of artificial intelligence and soft computing. It gives an in-depth look at mathematical models, algorithms, and real-world problems that are hard to solve in MATLAB. The book is intended to provide a broad and in-depth understanding of fuzzy logic controllers, genetic algorithms, neural networks, and hybrid techniques such as ANFIS and the GA-ANN model. Features: A detailed description of basic intelligent techniques (fuzzy logic, genetic algorithm and neural network using MATLAB) A detailed description of the hybrid intelligent technique called the adaptive fuzzy inference technique (ANFIS) Formulation of the nonlinear model like analysis of ANOVA and response surface methodology Variety of solved problems on ANOVA and RSM Case studies of above mentioned intelligent techniques on the different process control systems This book can be used as a handbook and a guide for students of all engineering disciplines, operational research areas, computer applications, and for various professionals who work in the optimization area.




Computing for Data Analysis: Theory and Practices


Book Description

This book covers various cutting-edge computing technologies and their applications over data. It discusses in-depth knowledge on big data and cloud computing, quantum computing, cognitive computing, and computational biology with respect to different kinds of data analysis and applications. In this book, authors describe some interesting models in the cloud, quantum, cognitive, and computational biology domains that provide some useful impact on intelligent data (emotional, image, etc.) analysis. They also explain how these computing technologies based data analysis approaches used for various real-life applications. The book will be beneficial for readers working in this area.




Healthcare Analytics and Advanced Computational Intelligence


Book Description

This book aims to apply state-of-the-art advanced computational intelligence frameworks in healthcare. It presents recent and real-life applications of computationally intelligent healthcare. It also discusses problems and solutions to remote healthcare and emergency healthcare services. Healthcare Analytics and Advanced Computational Intelligence highlights modern ambient intelligence-enabled healthcare models along with advanced topics like quantum computing in healthcare and cryptomedical systems. Healthcare Analytics and Advanced Computational Intelligence examines designing the latest medical systems and models that will allow the societal acceptance of ambiance computing in healthcare, medical imaging, health analytics, machine intelligence, sensory computing, medical data analytics, disease detection, telemedicine, and their applications. It includes diverse case studies dealing with various clinical-based applications. These intelligent models are primarily structured to deal with complex real-world issues in clinical data analytics, by means of state-of-the-art techniques with general implementation, domain-specific solutions, or hybrid methods which integrate computational intelligence with conventional statistical methods. The book is written for researchers and academicians in diverse areas. Engineers from technical disciplines such as computer engineering are likely to purchase the book. Various sub-streams such as machine learning, big data analytics, healthcare analytics, and computational intelligence will find the book significant for their curriculum.




Geospatial Science for Smart Land Management


Book Description

Responsible land distribution in Asia, with ever-increasing limitations in space, requires the use of smart technologies, sophisticated models, intelligent algorithms, and big data repositories. This book presents new land management perspectives and fit-for-purpose, flexible, dynamic, and effective solutions for land management and land administration problems. Written by global experts from different Asian countries, including China, India, Indonesia, Iran, Japan, South Korea, Thailand, Vietnam, etc., all these cases demonstrate how and why the uptake of geospatial technologies is booming and how to handle land scarcity and competing spatial interests in both urban and rural areas in Asia. FEATURES Summarizes trends of geospatial technologies in Asia Describes and applies leading-edge geospatial models Explains fit-for-purpose digital land administration Provides case studies and examples that include the use of smart land management tools Helps readers advance their understanding of geospatial and land management science Truly an interdisciplinary book, this text is a practical guide for an array of readers, such as practitioners in public and private companies involved in both geospatial and land management applications, as well as graduate students, researchers, academics, and professionals working in land administration, land management, spatial planning, real estate studies, geosciences, geoinformatics, and geodesy.