Coherent Evolution in Noisy Environments


Book Description

In the last two decades extraordinary progress in the experimental handling of single quantum objects has spurred theoretical research into investigating the coupling between quantum systems and their environment. Decoherence, the gradual deterioration of entanglement due to dissipation and noise fed to the system by the environment, has emerged as a central concept. The present set of lectures is intended as a high-level, but self-contained, introduction into the fields of quantum noise and dissipation.In particular their influence on decoherence and applications pertaining to quantum information and quantum communication are studied, leading the nonspecialist researchers and the advanced students gradually to the forefront of research.




Coherent Evolution in Noisy Environments


Book Description

In the last two decades extraordinary progress in the experimental handling of single quantum objects has spurred theoretical research into investigating the coupling between quantum systems and their environment. Decoherence, the gradual deterioration of entanglement due to dissipation and noise fed to the system by the environment, has emerged as a central concept. The present set of lectures is intended as a high-level, but self-contained, introduction into the fields of quantum noise and dissipation.In particular their influence on decoherence and applications pertaining to quantum information and quantum communication are studied, leading the nonspecialist researchers and the advanced students gradually to the forefront of research.




Entanglement and Decoherence


Book Description

Entanglement and (de-)coherence arguably define the central issues of concern in present day quantum information theory. Entanglement being a consequence of the quantum mechanical superposition principle for composite systems, a better understanding of the environment-induced destruction of coherent superposition states is required to devise novel strategies for harvesting quantum interference phenomena. The present book collects a series of advanced lectures on the theoretical foundations of this active research field, from mathematical aspects underlying quantum topology to mesoscopic transport theory. All lectures start out from an elementary level and proceed along a steep learning curve. This makes the material particularly suitable for student seminars on the more fundamental theoretical aspects of quantum information, and equally useful as supplementary reading for advanced lectures on this topic.




Philosophy of Physics


Book Description

The ambition of this volume is twofold: to provide a comprehensive overview of the field and to serve as an indispensable reference work for anyone who wants to work in it. For example, any philosopher who hopes to make a contribution to the topic of the classical-quantum correspondence will have to begin by consulting Klaas Landsman's chapter. The organization of this volume, as well as the choice of topics, is based on the conviction that the important problems in the philosophy of physics arise from studying the foundations of the fundamental theories of physics. It follows that there is no sharp line to be drawn between philosophy of physics and physics itself. Some of the best work in the philosophy of physics is being done by physicists, as witnessed by the fact that several of the contributors to the volume are theoretical physicists: viz., Ellis, Emch, Harvey, Landsman, Rovelli, 't Hooft, the last of whom is a Nobel laureate. Key features - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences that have grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers




Lie Theory and Its Applications in Physics


Book Description

This volume presents modern trends in the area of symmetries and their applications based on contributions to the Workshop "Lie Theory and Its Applications in Physics" held in Sofia, Bulgaria (on-line) in June 2021. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators, special functions, and others. Furthermore, the necessary tools from functional analysis are included. This is a big interdisciplinary and interrelated field. The topics covered in this Volume are the most modern trends in the field of the Workshop: Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories, Supergravity, Conformal Field Theory, Integrable Systems, Quantum Computing and Deep Learning, Entanglement, Applications to Quantum Theory, Exceptional quantum algebra for the standard model of particle physics, Gauge Theories and Applications, Structures on Lie Groups and Lie Algebras. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.




Chaotic Dynamics and Transport in Classical and Quantum Systems


Book Description

From the 18th to the 30th August 2003 , a NATO Advanced Study Institute (ASI) was held in Cargèse, Corsica, France. Cargèse is a nice small village situated by the mediterranean sea and the Institut d'Etudes Scientifiques de Cargese provides ? a traditional place to organize Theoretical Physics Summer Schools and Workshops * in a closed and well equiped place. The ASI was an International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems". The main goal of the school was to develop the mutual interaction between Physics and Mathematics concerning statistical properties of classical and quantum dynamical systems. Various experimental and numerical observations have shown new phenomena of chaotic and anomalous transport, fractal structures, chaos in physics accelerators and in cooled atoms inside atom-optics billiards, space-time chaos, fluctuations far from equilibrium, quantum decoherence etc. New theoretical methods have been developed in order to modelize and to understand these phenomena (volume preserving and ergodic dynamical systems, non-equilibrium statistical dynamics, fractional kinetics, coupled maps, space-time entropy, quantum dissipative processes etc). The school gathered a team of specialists from several horizons lecturing and discussing on the achievements, perspectives and open problems (both fundamental and applied).




Interfacial Fluid Dynamics and Transport Processes


Book Description

The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.




Theoretical Femtosecond Physics


Book Description

Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm2 are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenomena, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are presented and discussed on a fundamental level. In this way the theoretical background for state of the art experiments with strong and short laser pulses is given. The text is augmented by more than thirty exercises, whose worked-out solutions are given in the last chapter. Some detailed calculations are performed in the appendices. Furthermore, each chapter ends with references to more specialized literature.




Quantum Gravity


Book Description

The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.




Quantum Mathematics II


Book Description

This book is the second volume that provides an unique overview of the most recent and relevant contributions in the field of mathematical physics with a focus on the mathematical features of quantum mechanics. It is a collection of review papers together with brand new works related to the activities of the INdAM Intensive Period "INdAM Quantum Meetings (IQM22)", which took place at the Politecnico di Milano in Spring 2022 at Politecnico di Milano. The range of topics covered by the book is wide, going ranging from many-body quantum mechanics to quantum field theory and open quantum systems.