Coherent Flow Structures at Earth's Surface


Book Description

An expert review of recent progress in the study of turbulent flows with a focus on recently identified organized structures. This book reviews the recent progress in the study of the turbulent flows that sculpt the Earth’s surface, focusing in particular on the organized structures that have been identified in recent years within turbulent flows. These coherent flow structures can include eddies or vortices at the scale of individual grains, through structures that scale with the flow depth in rivers or estuaries, to the large-scale structure of flows at the morphological or landform scale. These flow structures are of wide interest to the scientific community because they play an important role in fluid dynamics and influence the transport, erosion and deposition of sediment and pollutants in a wide variety of fluid flow environments. Scientific knowledge of these structures has improved greatly over the past 20 years as computational fluid dynamics has come to play an increasing important part in building our understanding of coherent flow structures across a broad range of scales. Chapters comprise a series of major, invited papers and a selection of the most novel, innovative papers presented at the second Coherent Flow Structures Conference held August 3-5, 2011 at Simon Fraser University in Burnaby, British Columbia. Chapters focus on six major themes: Dynamics of coherent flow structures (CFS) in geophysical flows Interaction of turbulent flows, vegetation and ecological habitats Coherent structure of atmospheric flows Numerical modeling of coherent flow structures Turbulence in open channel flows Coherent flow structures, sediment transport and morphological feedbacks.




River Flow 2016


Book Description

Understanding and being able to predict fluvial processes is one of the biggest challenges for hydraulics and environmental engineers, hydrologists and other scientists interested in preserving and restoring the diverse functions of rivers. The interactions among flow, turbulence, vegetation, macroinvertebrates and other organisms, as well as the transport and retention of particulate matter, have important consequences on the ecological health of rivers. Managing rivers in an ecologically friendly way is a major component of sustainable engineering design, maintenance and restoration of ecological habitats. To address these challenges, a major focus of River Flow 2016 was to highlight the latest advances in experimental, computational and theoretical approaches that can be used to deepen our understanding and capacity to predict flow and the associated fluid-driven ecological processes, anthropogenic influences, sediment transport and morphodynamic processes. River Flow 2016 was organized under the auspices of the Committee for Fluvial Hydraulics of the International Association for Hydro-Environment Engineering and Research (IAHR). Since its first edition in 2002, the River Flow conference series has become the main international event focusing on river hydrodynamics, sediment transport, river engineering and restoration. Some of the highlights of the 8th International Conference on Fluvial Hydraulics were to focus on inter-disciplinary research involving, among others, ecological and biological aspects relevant to river flows and processes and to emphasize broader themes dealing with river sustainability. River Flow 2016 contains the contributions presented during the regular sessions covering the main conference themes and the special sessions focusing on specific hot topics of river flow research, and will be of interest to academics interested in hydraulics, hydrology and environmental engineering.




The Handbook of Groundwater Engineering, Third Edition


Book Description

This new edition adds several new chapters and is thoroughly updated to include data on new topics such as hydraulic fracturing, CO2 sequestration, sustainable groundwater management, and more. Providing a complete treatment of the theory and practice of groundwater engineering, this new handbook also presents a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the protection of groundwater, and the remediation of contaminated groundwater.




Sandy Beach Morphodynamics


Book Description

Sandy beaches represent some of the most dynamic environments on Earth and examining their morphodynamic behaviour over different temporal and spatial scales is challenging, relying on multidisciplinary approaches and techniques. Sandy Beach Morphodynamics brings together the latest research on beach systems and their morphodynamics and the ways in which they are studied in 29 chapters that review the full spectrum of beach morphodynamics. The chapters are written by leading experts in the field and provide introductory level understanding of physical processes and resulting landforms, along with more advanced discussions. - Includes chapters that are written by the world's leading experts, including the latest up-to-date thinking on a variety of subject areas - Covers state-of-the-art techniques, bringing the reader the latest technologies/methods being used to understand beach systems - Presents a clear-and-concise description of processes and techniques that enables a clear understanding of coastal processes




Turbulence and Flow–Sediment Interactions in Open-Channel Flows


Book Description

The main focus of this Special Issue of Water is the state-of-the-art and recent research on turbulence and flow–sediment interactions in open-channel flows. Our knowledge of river hydraulics is deepening, thanks to both laboratory/field experiments related to the characteristics of turbulence and their link to erosion, transport, deposition, and local scouring phenomena. Collaboration among engineers, physicists, and other experts is increasing and furnishing new inter-/multidisciplinary perspectives to the research of river hydraulics and fluid mechanics. At the same time, the development of both sophisticated laboratory instrumentation and computing skills is giving rise to excellent experimental–numerical comparative studies. Thus, this Special Issue, with ten papers by researchers from many institutions around the world, aims at offering a modern panoramic view on all the above aspects to the vast audience of river researchers.




Introduction to Coastal Processes and Geomorphology


Book Description

Grounded in current research, this second edition has been thoroughly updated, featuring new topics, global examples and online material. Written for students studying coastal geomorphology, this is the complete guide to the processes at work on our coastlines and the features we see in coastal systems across the world.




Aeolian Geomorphology


Book Description

A revised introduction to aeolian geomorphology written by noted experts in the field The new, revised and updated edition of Aeolian Geomorphology offers a concise and highly accessible introduction to the subject. The text covers the topics of deserts and coastlines, as well as periglacial and planetary landforms. The authors review the range of aeolian characteristics that include soil erosion and its consequences, continental scale dust storms, sand dunes and loess. Aeolian Geomorphology explores the importance of aeolian processes in the past, and the application of knowledge about aeolian geomorphology in environmental management. The new edition includes contributions from eighteen experts from four continents. All the chapters demonstrate huge advances in observation, measurement and mathematical modelling. For example, the chapter on sand seas shows the impact of greatly enhanced and accessible remote sensing and the chapter on active dunes clearly demonstrates the impact of improvements in field techniques. Other examples reveal the power of greatly improved laboratory techniques. This important text: Offers a comprehensive review of aeolian geomorphology Contains contributions from an international panel of eighteen experts in the field Includes the results of the most recent research on the topic Filled with illustrative examples that demonstrate the advances in laboratory approaches Written for students and professionals in the field, Aeolian Geomorphology provides a comprehensive introduction to the topic in twelve new chapters with contributions from noted experts in the field.




River Dynamics


Book Description

A comprehensive overview of the geomorphological processes that shape rivers and that should be considered in river management.




Remote Sensing of Turbulence


Book Description

This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.




Micrometeorology


Book Description

The book focusses on atmospheric processes, which directly affect human environments within the lowest 100–1000 meters of the atmosphere over regions of only a few kilometres in extent. The book is the translation into English of the third edition of the German book “Applied Meteorology – Micrometeorological Methods”. It presents, with selected examples, the basics of micrometeorology applied to disciplines such as biometeorology, agrometeorology, hydrometeorology, technical meteorology, environmental meteorology, and biogeosciences. The important issues discussed in this book are the transport processes and fluxes between the atmosphere and the underlying surface. Vegetated and heterogeneous surfaces are special subjects. The author covers the areas of theory, measurement techniques, experimental methods, and modelling all in ways that can be used independently in teaching, research, or practical applications.