Ultra-Cold Atoms and Bec in a 1d Quasi-Electrostatic Optical Lattice


Book Description

Ultra-cold atoms and Bose-Einstein condensate(BEC) in optical lattices is an ideal test-bed for fundamental models of condensed matter Physics. Experiments with cold atoms and BEC are quite challenging and requires the knowledge of a wide variety of experimental methods and techniques. In this book, the basic concepts of laser cooling and Bose-Einstein condensation are discussed along with a description of the experimental apparatus and methods. A source of cold atomic beam with high flux is described as a favourable starting point for a BEC experiment with high initial number of atoms. The theoretical basics of optical dipole trapping in harmonic traps and optical lattices are described along with the experimental techniques for efficient loading into a dipole trap and optical lattice. All-optical Bose-Einstein condensation in optical dipole trap and a 1D optical lattice is described followed by the study of mean-field dynamics in an array of micro-condensates produced in the 1D optical lattice. This book would provide a basic intoduction to laser-cooling and all-optical BEC experiments to newcomers in the field as well as a handy reference book for the experienced researchers.




Transport and Turbulence in Quasi-Uniform and Versatile Bose-Einstein Condensates


Book Description

Advancing the experimental study of superfluids relies on increasingly sophisticated techniques. We develop and demonstrate the loading of Bose-Einstein condensates (BECs) into nearly arbitrary trapping potentials, with a resolution improved by a factor of seven when compared to reported systems. These advanced control techniques have since been adopted by several cold atoms labs around the world. How this BEC system was used to study 2D superfluid dynamics is described. In particular, negative temperature vortex states in a two-dimensional quantum fluid were observed. These states were first predicted by Lars Onsager 70 years ago and have significance to 2D turbulence in quantum and classical fluids, long-range interacting systems, and defect dynamics in high-energy physics. These experiments have established dilute-gas BECs as the prototypical system for the experimental study of point vortices and their nonequilibrium dynamics. We also developed a new approach to superfluid circuitry based on classical acoustic circuits, demonstrating its conceptual and quantitative superiority over previous lumped-element models. This has established foundational principles of superfluid circuitry that will impact the design of future transport experiments and new generation quantum devices, such as atomtronics circuits and superfluid sensors.




Universal Themes of Bose-Einstein Condensation


Book Description

Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.







Quantum Matter at Ultralow Temperatures


Book Description

The Enrico Fermi summer school on Quantum Matter at Ultralow Temperatures held on 7-15 July 2014 at Varenna, Italy, featured important frontiers in the field of ultracold atoms. For the last 25 years, this field has undergone dramatic developments, which were chronicled by several Varenna summer schools, in 1991 on Laser Manipulation of Atoms, in 1998 on Bose-Einstein Condensation in Atomic Gases, and in 2006 on Ultra-cold Fermi Gases. The theme of the 2014 school demonstrates that the field has now branched out into many different directions, where the tools and precision of atomic physics are used to realise new quantum systems, or in other words, to quantum-engineer interesting Hamiltonians. The topics of the school identify major new directions: Quantum gases with long range interactions, either due to strong magnetic dipole forces, due to Rydberg excitations, or, for polar molecules, due to electric dipole interactions; quantum gases in lower dimensions; quantum gases with disorder; atoms in optical lattices, now with single-site optical resolution; systems with non-trivial topological properties, e.g. with spin-orbit coupling or in artificial gauge fields; quantum impurity problems (Bose and Fermi polarons); quantum magnetism. Fermi gases with strong interactions, spinor Bose-Einstein condensates and coupled multi-component Bose gases or Bose-Fermi mixtures continue to be active areas. The current status of several of these areas is systematically summarized in this volume.




Annual Review Of Cold Atoms And Molecules - Volume 2


Book Description

The aim of this book is to present review articles describing the latest theoretical and experimental developments in the field of cold atoms and molecules. Our hope is that this series will promote research by both highlighting recent breakthroughs and by outlining some of the most promising research directions in the field.




Ultracold Bosonic and Fermionic Gases


Book Description

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations




Current Topics in Atomic, Molecular and Optical Physics


Book Description

Focuses on research in crucial areas such as: cold atoms and Bose-Einstein condensates, quantum information and quantum computation, and techniques for investigating collisions and structure. This work covers topics that includes the multireference coupled cluster method in quantum chemistry and the role of electronic correlation in nanosystems.




Bose-Einstein Condensates and Atom Lasers


Book Description

Annotation Physics researchers survey the methods used to produce, manipulate, and study the condensate in dilute atomic gases, which have generated a lot of excitement since their experimental demonstration in 1995. They emphasize the anticipated development of new types of sources for the novel macroscopic quantum system of coherent atoms. Such sources are looking more and more similar to the various types of lasers--pulsed, CW, mode locked--and likely to produce a revolution similar to that sparked by lasers four decades previously. The 23 papers comprise the proceedings of an international school of quantum electronics held in Erice, Italy in October 1999. Annotation c. Book News, Inc., Portland, OR (booknews.com).