An Introduction to Cold and Ultracold Chemistry


Book Description

This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers.




Interactions in Ultracold Gases


Book Description

Arising from a workshop, this book surveys the physics of ultracold atoms and molecules taking into consideration the latest research on ultracold phenomena, such as Bose Einstein condensation and quantum computing. Several reputed authors provide an introduction to the field, covering recent experimental results on atom and molecule cooling as well as the theoretical treatment.




Annual Review of Cold Atoms and Molecules


Book Description

The aim of this book is to present review articles describing the latest theoretical and experimental developments in the field of cold atoms and molecules. Our hope is that this series will promote research by both highlighting recent breakthroughs and by outlining some of the most promising research directions in the field.




Quantum Phase Transitions in Cold Atoms and Low Temperature Solids


Book Description

The primary focus of this thesis is to theoretically describe nanokelvin experiments in cold atomic gases, which offer the potential to revolutionize our understanding of strongly correlated many-body systems. The thesis attacks major challenges of the field: it proposes and analyzes experimental protocols to create new and interesting states of matter and introduces theoretical techniques to describe probes of these states. The phenomena considered include the fractional quantum Hall effect, spectroscopy of strongly correlated states, and quantum criticality, among others. The thesis also clarifies experiments on disordered quantum solids, which display a variety of exotic phenomena and are candidates to exhibit so-called "supersolidity." It collects experimental results and constrains their interpretation through theoretical considerations. This Doctoral Thesis has been accepted by Cornell University, Ithaca, USA.




Cold Atoms and Molecules


Book Description

This book introduces the preparation, measurement and properties of ultra-cold atoms and molecules at a level accessible to advanced undergraduate students or for researchers approaching the subject from different specialities. Including a review of cooling techniques, the book focuses on the behaviour and applications of both ultra-cold atoms and molecules, and how they are shaping research in atomic physics, quantum optics, condensed matter physics, statistical mechanics, quantum information processing, quantum simulators and finding applications in ultra-high-precision atomic clocks and quantum metrology. Readers of this text should develop an understanding of the techniques used to cool, trap, manipulate and perform measurements on ultra-cold atoms and molecules, as well as how such systems are in being used in a range of exciting areas of modern physics. Key Features Provides an accessible overview for advanced undergraduate students or for researchers approaching the subject from different specialities. Extensive coverage encompassing preparation, properties and applications Includes references to key papers Mathematical appendices




Ultracold Atoms in Optical Lattices


Book Description

This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.




Quantum Gases


Book Description

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.




Cold Atoms and Molecules


Book Description

A survey of the physics of ultracold atoms and molecules, taking into consideration the latest research on ultracold phenomena, such as Bose Einstein condensation and quantum computing. This textbook covers recent experimental results on atom and molecule cooling as well as the theoretical treatment.




Low Temperatures and Cold Molecules


Book Description

This book brings together, for the first time, the results of recent research in areas ranging from the chemistry of cold interstellar clouds (10-20 K), through laboratory studies of the spectroscopy and kinetics of ions, radicals and molecules, to studies of molecules in liquid helium droplets, to attempts to create molecular (as distinct from atomic) Bose-Einstein condensates.




Physics of Ultra-Cold Matter


Book Description

The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the wave kinetic theory based on Wigner functions. Other theoretical approaches, eventually more familiar to the reader, are also given for extension and comparison. The book considers laser cooling techniques, atom-atom interactions, and focuses on the elementary excitations and collective oscillations in atomic clouds, Bose-Einstein condensates, and Rydberg plasmas. Linear and nonlinear processes are considered, including Landau damping, soliton excitation and vortices. Atomic interferometers and quantum coherence are also included.