Low Temperatures and Cold Molecules


Book Description

This book brings together, for the first time, the results of recent research in areas ranging from the chemistry of cold interstellar clouds (10-20 K), through laboratory studies of the spectroscopy and kinetics of ions, radicals and molecules, to studies of molecules in liquid helium droplets, to attempts to create molecular (as distinct from atomic) Bose-Einstein condensates.




Cold Molecules


Book Description

The First Book on Ultracold MoleculesCold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusse




Hot Molecules, Cold Electrons


Book Description

"This book is a testament to the intimate, mutual embrace of mathematics and physics. It achieves that by telling the story of an historical event of tremendous impact upon society, both spiritually and technically - the mid-19th century construction of the trans-Atlantic telegraph cable, which reduced the time to send a message across the ocean from weeks to minutes. The story of the cable actually begins decades earlier, at the start of the century, with the French mathematical physicist Joseph Fourier's development of the mathematics that the Scottish physicist William Thomson (later Lord Kelvin) would use to analyze the electrical physics of the cable. The story of Fourier opens the book, that of Thomson completes it, and in-between the reader will learn how to derive Fourier's second-order partial differential equation for the flow of heat energy in matter, how Fourier solved the heat equation, how Thomson used Fourier's solutions to calculate the age of the Earth (imagined to be the result of the of an initially molten sphere of blinding brilliance) and, finally, how Thomson showed that the heat equation also describes the Atlantic cable. An epilogue describing the post-Thomson developments completes the book. All readers who have completed first courses at the level of AP-calculus and AP-physics will be able to read this book. This is a perhaps surprising feature of the book, as the mathematics discussed is normally not encountered until the second year (or even later) of college-level work. This book shows that, in fact, the technical material is fully graspable by a college freshman. Unlike a pure technical book, readers will also find a lot of fascinating history in this book (including the bizarre story of how the English novelist Charles Dickens used the Atlantic cable to send a coded message - during his 1867 American reading tour - to avoid a career-damaging scandal concerning his mistress)"--




An Introduction to Cold and Ultracold Chemistry


Book Description

This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers.




Interactions in Ultracold Gases


Book Description

Arising from a workshop, this book surveys the physics of ultracold atoms and molecules taking into consideration the latest research on ultracold phenomena, such as Bose Einstein condensation and quantum computing. Several reputed authors provide an introduction to the field, covering recent experimental results on atom and molecule cooling as well as the theoretical treatment.




Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.




The Machinery of Life


Book Description

A journey into the sub-microscopic world of molecular machines. Readers are first introduced to the types of molecules built by cells: proteins, nucleic acids, lipids, and polysaccharides. Then, in a series of distinctive illustrations, the reader is guided through the interior world of cells, exploring the ways in which molecules work in concert to perform the processes of living. Finally, the author shows us how vitamins, viruses, poisons, and drugs each have their effects on the molecules in our bodies. David Goodsell, author and illustrator, has prepared a fascinating introduction to biochemistry for the non-specialist. His book combines a lucid text with an abundance of drawings and computer graphics that present the world of cells and their components in a truly unique way.




Tutorials in Molecular Reaction Dynamics


Book Description

The focus of this excellent textbook is the topic of molecular reaction dynamics. The chapters are all written by internationally recognised researchers and, from the outset, the contributors are writing with the young scientist in mind. The easy to use, stand-alone, chapters make it of value to students, teachers, and researchers alike. Subjects covered range from the more traditional topics, such as potential energy surfaces, to more advanced and rapidly developing areas, such as femtochemistry and coherent control. The coverage of reaction dynamics is very broad, so many students studying chemical physics will find elements of this text interesting and useful. Tutorials in Molecular Reaction Dynamics includes extensive references to more advanced texts and research papers, and a series of 'Study Boxes' help readers grapple with the more difficult concepts. Each chapter is thoroughly cross-referenced, helping the reader to link concepts from different branches of the subject. Worked problems are included, and each chapter concludes with a selection of problems designed to test understanding of the subjects covered. Supplementary reading material, and worked solutions to the problems, are contained on a secure website.




Advances in Atomic, Molecular, and Optical Physics


Book Description

This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics.




Trapped Particles and Fundamental Physics


Book Description

Fundamental physics with trapped particles (ions, atoms or molecules) rep resents one of the most challenging and promising fields of investigation, with impressive results during this last decade. The use of both particle trapping and laser cooling techniques, together with traditional techniques of atomic physics, represents a powerlul tool of investigation for a wide range of fields. Experiments spanning very high resolution spectroscopy to Bose-Einstein condensation, tests of the Standard Model ofelectroweak interactions to precise mass measurements, detailed analysis of ~ decay to QED tests have been presented by leading scientists who reported the most recent results and discussed the perspectives in the different fields. During the ten working days of the School, 39 lecturers, 6 seminars and two poster sessions have been organized by offering to the attendants a.complete pic ture of the present research status about the new frontiers of atomic physics. L. Caneschi gave a general overview of the Standard Model of electroweak interac tions. He pointed out the achievements and the limits of validity of the model.