Collagen-Based Biotextiles for Tissue Engineering


Book Description

Based on the author's extensive research experience in collagen textiles and tissue engineering, this book presents a comprehensive introduction and guidelines for engineering artificial tissue using collagen-based fibrous material as a therapeutic candidate for regenerative medicine. The book covers different aspects of fibrous collagen material, including its chemistry, sourcing, fabrication, and applications in tissue engineering and regenerative medicine. Collagen-Based Biotextiles for Tissue Engineering provides a state-of-the-art overview of fibrous collagen-based materials and their application in tissue engineering and regenerative medicine for academic researchers, material scientists, and bioengineers.




Biotextiles as medical implants


Book Description

The chapter discusses the advantages and limitations of arterial prostheses (or vascular grafts) in terms of their biocompatibility, biofunctionality and biostability. Criteria for biomaterials selection and prosthesis design that have enabled patients to recover more rapidly without any device-related complications are reviewed, and developments are considered that may lead to future improvements in healing and clinical outcomes for the next generation of vascular prostheses.




Nanotechnology Based Advanced Medical Textiles and Biotextiles for Healthcare


Book Description

This book provides systematic coverage of research into medical and biotextiles based on nanomaterials as applicable in healthcare. Divided into three sections, it explains manufacturing, properties, types, and recent developments in nanotechnology based medical textiles backed by case studies. It includes a wide range of different clinical applications of biotextiles for healthcare including nanotextile scaffolds, nano-based artificial organs, surgical sutures, enzymatic assisted enhanced biotextiles, tissue engineering or drug delivery system via nanofibers, and so forth. Features: Provides strong and broad overview of medical applications in the field of nano and biotextiles. Highlights different approaches, recent research, and emerging innovations. Covers designing or developing nanomaterials based antiviral surface disinfectants with self-cleaning property. Reviews different applications of nano based medical textiles such as deodorizing or pH control clothing for hygiene maintenance. Includes the real-life applications based descriptive case studies that offer a diverse range of perspectives. This book is aimed at researchers and graduate students in textile technology and engineering, and medical textiles.




Novel Biomaterials for Regenerative Medicine


Book Description

This book explores in depth a wide range of new biomaterials that hold great promise for applications in regenerative medicine. The opening two sections are devoted to biomaterials designed to direct stem cell fate and regulate signaling pathways. Diverse novel functional biomaterials, including injectable nanocomposite hydrogels, electrosprayed nanoparticles, and waterborne polyurethane-based materials, are then discussed. The fourth section focuses on inorganic biomaterials, such as nanobioceramics, hydroxyapatite, and titanium dioxide. Finally, up-to-date information is provided on a wide range of smart natural biomaterials, ranging from silk fibroin-based scaffolds and collagen type I to chitosan, mussel-inspired biomaterials, and natural polymeric scaffolds. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth the latest enabling technologies for regenerative medicine.




Biomaterials Science


Book Description

The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters




Biotextiles as Medical Implants


Book Description

Textiles play a vital role in the manufacture of various medical devices, including the replacement of diseased, injured or non-functioning organs within the body. Biotextiles as medical implants provides an invaluable single source of information on the main types of textile materials and products used for medical implants. The first part of the book focuses on polymers, fibers and textile technologies, and these chapters discuss the manufacture, sterilization, properties and types of biotextiles used for medical applications, including nanofibers, resorbable polymers and shaped biotextiles. The chapters in part two provide a comprehensive discussion of a range of different clinical applications of biotextiles, including surgical sutures, arterial prostheses, stent grafts, percutaneous heart valves and drug delivery systems.This book provides a concise review of the technologies, properties and types of biotextiles used as medical devices. In addition, it addresses the biological dimension of how to design devices for different clinical applications, providing an invaluable reference for biomedical engineers of medical textiles, quality control and risk assessment specialists, as well as managers of regulatory affairs. The subject matter will also be of interest to professionals within the healthcare system including surgeons, nurses, therapists, sourcing and purchasing agents, researchers and students in different disciplines. - Provides an invaluable single source of information on the main types of textile materials and products used for medical implants - Addresses the technologies used and discusses the manufacture, properties and types of biotextiles - Examines applications of biotextiles as medical implants, including drug delivery systems and stent grafts and percutaneous heart valves




Smart Textiles from Natural Resources


Book Description

Smart Textiles from Natural Resources is an interdisciplinary guide to best practice and emerging challenges in the use of natural textiles in smart applications. The movement towards smart textiles has attracted researchers from many fields creating multidisciplinary research frontiers with nanoscience, smart materials and structures, microelectronics, and wireless communication. This ground-breaking book provides technical advice and foundational support to researchers from all of these backgrounds seeking to include sustainability in their solutions.Each chapter in this book is written, reviewed and edited to cover the principles of manufacture, process techniques and mechanisms, and the state-of-the-art construction specifications, properties, test methods and standards of the major product areas and applications of this field. - Covers a wide variety of novel applications of smart textiles, including medical, protective, and automotive - Proposed solutions are based on case studies from academic and industrial labs around the world - Explains how to improve the biodegradability, renewability, biocompatibility, and non-toxicity of smart products




Osteochondral Tissue Engineering


Book Description

This book reviews the most recent developments in the field of osteochondral tissue engineering (OCTE) and presents challenges and strategies being developed that face not only bone and cartilage regeneration, but also establish osteochondral interface formation in order to translate it into a clinical setting. Topics include nanotechnology approaches and biomaterials advances in osteochondral engineering, advanced processing methodology, as well as scaffolding and surface engineering strategies in OCTE. Hydrogel systems for osteochondral applications are also detailed thoroughly. Osteochondral Tissue Engineering: Nanotechnology, Scaffolding-Related Developments and Translation is an ideal book for biomedical engineering students and a wide range of established researchers and professionals working in the orthopedic field.




Tissue Regeneration


Book Description

Tissue regeneration is a vast subject, with many different important aspects to consider. Regenerative medicine is a new branch of medicine that tries to change the course of chronic diseases and, in many cases, regenerates the organ systems that fail due to age, disease, damage, or genetic defects. The main purpose of this book is to point out the interest of some important topics of tissue regeneration and the progress in this field as well as the variety of different surgical fields and operations. This book includes 7 sections and 11 chapters that provide an overview of the essentials in tissue regeneration science and their potential applications in surgery. The authors of each chapter have given consolidated information on ground realities and attempted to provide a comprehensive knowledge of tissue engineering and regeneration. This book will be useful to researchers and students of biological and biomedical sciences (medical and veterinarian researchers).