Collider


Book Description

An accessible look at the hottest topic in physics and the experiments that will transform our understanding of the universe The biggest news in science today is the Large Hadron Collider, the world's largest and most powerful particle-smasher, and the anticipation of finally discovering the Higgs boson particle. But what is the Higgs boson and why is it often referred to as the God Particle? Why are the Higgs and the LHC so important? Getting a handle on the science behind the LHC can be difficult for anyone without an advanced degree in particle physics, but you don't need to go back to school to learn about it. In Collider, award-winning physicist Paul Halpern provides you with the tools you need to understand what the LHC is and what it hopes to discover. Comprehensive, accessible guide to the theory, history, and science behind experimental high-energy physics Explains why particle physics could well be on the verge of some of its greatest breakthroughs, changing what we think we know about quarks, string theory, dark matter, dark energy, and the fundamentals of modern physics Tells you why the theoretical Higgs boson is often referred to as the God particle and how its discovery could change our understanding of the universe Clearly explains why fears that the LHC could create a miniature black hole that could swallow up the Earth amount to a tempest in a very tiny teapot "Best of 2009 Sci-Tech Books (Physics)"-Library Journal "Halpern makes the search for mysterious particles pertinent and exciting by explaining clearly what we don't know about the universe, and offering a hopeful outlook for future research."-Publishers Weekly Includes a new author preface, "The Fate of the Large Hadron Collider and the Future of High-Energy Physics" The world will not come to an end any time soon, but we may learn a lot more about it in the blink of an eye. Read Collider and find out what, when, and how.




Idea Colliders


Book Description

A provocative call for the transformation of science museums into "idea colliders" that spark creative collaborations and connections. Today's science museums descend from the Kunst-und Wunderkammern of the Renaissance--collectors' private cabinets of curiosities--through the Crystal Palace exhibition of 1851 to today's "interactive" exhibits promising educational fun. In this book, Michael John Gorman issues a provocative call for the transformation of science museums and science centers from institutions dedicated to the transmission of cultural capital to dynamic "idea colliders" that spark creative collaborations and connections. This new kind of science museum would not stage structured tableaux of science facts but would draw scientists into conversation with artists, designers, policymakers, and the public. Rather than insulating visitors from each other with apps and audio guides, the science museum would consider each visitor a resource, bringing questions, ideas, and experiences from a unique perspective.




Tunnel Visions


Book Description

“A detailed and engaging account of the development of the superconducting supercollider, one of the largest scientific undertakings in the United States.” —Journal of American History Starting in the 1950s, US physicists dominated the search for elementary particles; aided by the association of this research with national security, they held this position for decades. In an effort to maintain their hegemony and track down the elusive Higgs boson, they convinced President Reagan and Congress to support construction of the multibillion-dollar Superconducting Super Collider project in Texas—the largest basic-science project ever attempted. But after the Cold War ended and the estimated SSC cost surpassed ten billion dollars, Congress terminated the project in October 1993. Drawing on extensive archival research, contemporaneous press accounts, and over one hundred interviews with scientists, engineers, government officials, and others involved, Tunnel Visions tells the riveting story of the aborted SSC project. The authors examine the complex, interrelated causes for its demise, including problems of large-project management, continuing cost overruns, and lack of foreign contributions. In doing so, they ask whether Big Science has become too large and expensive, including whether academic scientists and their government overseers can effectively manage such an enormous undertaking. “Focusing on the scientific, technical, and political conflicts that led to delays, ever rising costs, and eventually the SSC’s cancelation by Congress, Tunnel Visions is a true techno-thriller.” —Burton Richter, winner of the Nobel Prize in Physics “Most good science stories are tales of discovery and success, but failure can be just as riveting. Here two historians and an archivist describe the greatest particle physics experiment that never was.” —Scientific American




Accelerators and Colliders


Book Description

Since the mid-twentieth century, accelerators and colliders have been at the forefront of science and technology in the fields of space, medicine, energy, and others. This book presents sophisticated knowledge about accelerators and colliders and their crucial technological applications. With six chapters, the book presents information about currently available accelerators and colliders as well as novel schemes for future systems. Other topics covered include vacuum systems, elementary particles, and quantum chromodynamics.




The Large Hadron Collider


Book Description

Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.




Physics And Experiments With Linear Colliders (In 2 Vols)


Book Description

This workshop brought together for the first time accelerator experts as well as experimental and theoretical high energy physicists from all over the world to consider the physics potential of high energy linear electron-positron colliders. A wide variety of physics cases were presented ranging from precision tests of the top quark and electroweak gauge bosons to searches of the intermediate mass Higgs bosons and supersymmetric particles.







Physics With High Energy Colliders - Proceedings Of 22nd Ins International Symposium


Book Description

Recent results from all types of high energy colliders (e⁺e⁻, pp, ep) are presented from the view point of electroweak interaction and QCD/Jet physics together with related phenomenological reviews. Expected physics at future colliders, both being built or planned, are also discussed including e+e- linear collider, pp collider and heavy ion collider.




Higgs boson potential at colliders: status and perspectives


Book Description

Questo documento riassume lo stato attuale degli ricerche studi, teorici e sperimentali, sulla produzione di coppie di bosoni di Higgs, e sui vincoli, sia diretti che indiretti, al valore del termine di auto-interazione del bosone di Higgs, con l’intento di servire da referenza per i prossimi anni. Il documento discute lo stato degli studi teorici, includendo le più recenti stime della sezione di produzione di coppie di bosoni di Higgs, sviluppi sulle teorie di campo efficaci, e studi su specifici scenari di nuova fisica che possono contribuire alla produzione di due bosoni di Higgs. Sono presentati i più recenti risultati sperimentali sulle ricerche di coppie di bosoni di Higgs e sui limiti diretti e indiretti al termine di auto-interazione, ottenuti al Large Hadron Collider di Ginevra, con una panoramica delle tecniche sperimentali. Infine, sono discusse le capacità dei collisionatori futuri di determinare il termine di auto-interazione del bosone di Higgs. Questo lavoro è iniziato come raccolta di contributi della conferenza “Di-Higgs ai Colliders”, che ha avuto luogo a Fermilab dal 4 al 9 settembre 2018, ma gli argomenti discussi vanno al di là di quelli presentati alla conferenza, includendo ulteriori sviluppi.




Hadron Colliders At The Highest Energy And Luminosity: Proceedings Of The 34th Wrshp Of The Infn Project


Book Description

The quest for the revelation of the deepest composition of the structure of matter and the nature of the fundamental forces that bind them together is underway, using experiments with colliding hadron beams at the largest energy and luminosity that present and near-future accelerator technology can allow. This book gives the physics motivation of such a collider and discusses the benefits and requirements of the experimental program. Obviously the size of the collider is a major concern, and that is determined by the bending field which is possible to achieve in superconducting magnets; the book includes a discussion on the ultimate expected magnetic field that can be reached. There are also presentations of straw-man designs; in particular, the effects of the synchrotron radiation, which are quite significant at very large energies and large bending fields, are examined, with the possibility of taking advantage of them for the attainment of small beam size and thus luminosity. In addition, detector issues are discussed, especially in relation to the large expected background, the total number of events, and the difficulties of gathering and selecting relevant events. Finally, there is a discussion on the social and political implications of such a project.