THEORY CHEM REACT DYN


Book Description




Alerta


Book Description




State Selected and State-to-State Ion-Molecule Reaction Dynamics, Volume 82, Part 1


Book Description

State-Selected and State-to-State Ion-Molecules Reaction Dynamics details the recent experimental and theoretical accomplishments in the field to date by some of its foremost researchers and theorists. Divided into two parts, each of which separately describe the experimental and theoretical aspects of the field, State-Selected and State-to-State Ion-Molecule Reaction Dynamics is an accessible, well organized look at a highly useful and emerging chemical specialty. Part 1, "Experiment," contains eight in-depth studies, which illustrate the key experimental work being done in the field today: Chapter 1 provide a comprehensive review of the theory and application of inhomogeneous rf fields for the study of the dynamics of low-energy ion-molecules processes Chapter 2 describes the application of multiphoton ionization (MPI) for the preparation of reactant ion states Chapter 3 reviews the application of MPI schemes for state specific cross-section measurements involving transition metal cations Chapter 4 describes the development of the threshold photoelectron secondary ion coincidence (TESICO) method Chapter 5 presents the conceptual and practical aspects of a multicoincidence technique Chapter 6 details the experimental results obtained using the photoionization and differential reactivity methods Chapter 7 reviews the several recent crossed beam studies of charge transfer and collision-induced dissociation systems involving atomic and molecular ions Chapter 8 is a survey of 15 years of high resolution crossed beam scattering of protons with atoms, diatoms, and poly-atomic molecules State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment offers professionals a true state-of-the-science look at this fascinating and increasingly influential subject.







INIS Atomindeks


Book Description




Boletín de actualización


Book Description




Atom - Molecule Collision Theory


Book Description

The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.




Dynamics of Molecules and Chemical Reactions


Book Description

Covers both molecular and reaction dynamics. The work presents important theroetical and computational approaches to the study of energy transfer within and between molecules, discussing the application of these approaches to problems of experimental interest. It also describes time-dependent and time-independent methods, variational and perturbative techniques, iterative and direct approaches, and methods based upon the use of physical grids of finite sets of basic function.







Reaction and Molecular Dynamics


Book Description

The amazing growth of computational resources has made possible the modeling of complex chemical processes. To develop these models one needs to proceed from rigorous theoretical methods to approximate ones by exploiting the potential of innovative architectural features of modern concurrent processors. This book reviews some of the most advanced theoretical approaches in the field of molecular reaction dynamics in order to cope as rigorously as possible with the complexity of real systems.