Optical Properties and Remote Sensing of Inland and Coastal Waters


Book Description

Optical Properties and Remote Sensing of Inland and Coastal Waters discusses the methodology and the theoretical basis of remote sensing of water. It presents physical concepts of aquatic optics relevant to remote sensing techniques and outlines the problems of remote measurements of the concentrations of organic and inorganic matter in water. It also details the mathematical formulation of the processes governing water-radiation interactions and discusses the development of bio-optical models to incorporate optically complex bodies of water into remote sensing projects. Optical Properties and Remote Sensing of Inland and Coastal Waters derives and evaluates the interrelationships among inherent optical properties of natural water, water color, water quality, primary production, volume reflectance spectra, and remote sensing. This timely and comprehensive text/reference addresses the increasing tendency toward multinational and multidisciplinary climate studies and programs.




Bio-optical Modeling and Remote Sensing of Inland Waters


Book Description

Bio-optical Modeling and Remote Sensing of Inland Waters presents the latest developments, state-of-the-art, and future perspectives of bio-optical modeling for each optically active component of inland waters, providing a broad range of applications of water quality monitoring using remote sensing. Rather than discussing optical radiometry theories, the authors explore the applications of these theories to inland aquatic environments. The book not only covers applications, but also discusses new possibilities, making the bio-optical theories operational, a concept that is of great interest to both government and private sector organizations. In addition, it addresses not only the physical theory that makes bio-optical modeling possible, but also the implementation and applications of bio-optical modeling in inland waters. Early chapters introduce the concepts of bio-optical modeling and the classification of bio-optical models and satellite capabilities both in existence and in development. Later chapters target specific optically active components (OACs) for inland waters and present the current status and future direction of bio-optical modeling for the OACs. Concluding sections provide an overview of a governance strategy for global monitoring of inland waters based on earth observation and bio-optical modeling. - Presents comprehensive chapters that each target a different optically active component of inland waters - Contains contributions from respected and active professionals in the field - Presents applications of bio-optical modeling theories that are applicable to researchers, professionals, and government agencies




Color of Inland and Coastal Waters


Book Description

The inorganic and organic water constituents, often called color-producing agents (CPAs), responsible for water color are generally referred to as water quality parameters. Utilization of water color for assessment of water quality parameters can be achieved by using the established techniques in aquatic optics attained over many decades. Aquatic optics can be subdivided according to whether the natural water body is salty (marine), inland or fresh (limnological), or coastal (often brackish). The authors describe the transformation of water color under varying natural and anthropogenically-driven conditions and, for the first time in a quantitative manner, a closed circle of issues related to remote sensing of water quality in optically complex waters generally inherent to inland and marine coastal waters. Primarily, the text synthesizes the solutions of problems in remote sensing, incorporating mathematics, hydrobiology/hydochemistry, atmospheric optics and ecology.




Satellite Monitoring of Inland and Coastal Water Quality


Book Description

Satellite Monitoring of Inland and Coastal Water Quality: Retrospection, Introspection, Future Directions reviews how aquatic optics models can convert remote determinations of water color into accurate assessments of water quality. This book illustrates how this conversion can generate products of value for the environmental monitoring of opticall







Water Optics and Water Colour Remote Sensing


Book Description

This book is a printed edition of the Special Issue "Water Optics and Water Colour Remote Sensing" that was published in Remote Sensing




Official Gazette


Book Description




Colour and Light in the Ocean


Book Description

CLEO publications in Frontiers in Marine Science Foreword Josef Aschbacher, Director of ESA’s Earth Observation Programmes Satellite data have drastically changed the view we have of the oceans. Covering about 70% of Earth’s surface, oceans play a unique role for our planet and for our life – but large areas remain unexplored and are difficult to reach. Since the 1980s, Earth-orbiting satellites have helped to observe what is happening at the ocean surface. Sensors like CZCS, AVHRR, SeaWifs and MODIS provided the first ocean colour data from space. Starting in 2002, ESA's Medium Resolution Imaging Spectrometer (MERIS) on-board the environmental satellite Envisat, provided detailed information on phytoplankton biomass and concentrations of other matter in the global oceans. These satellite observations laid the groundwork for studying the marine environment and how it responds to climate change, and the research community has since delivered information on the variability of marine ecosystems. Part of this work is reflected in this stunning collection of peer-reviewed publications presented at the workshop, Colour and Light in the Ocean from Earth Observation (CLEO), held at ESA’s ESRIN site in Frascati, Italy, on 6–8 September 2016. The event attracted more than 160 participants from all over the world, including remote sensing experts, marine ecosystem modelers, in-situ observers and users of Earth observation data. Scientifically, the meeting covered applications in climate studies over primary productivity and ocean dynamics, to pools of carbon and phytoplankton diversity at global and regional scales. It also demonstrated the potential of Earth observation and its contribution to modern oceanography. Looking to the future, new satellites developed by ESA under the coordination of the European Commission will further our scientific and operational observations of the seas. With Sentinel-3A in orbit and its twin Sentinel-3B following in 2017, there is a new category of data available for operational oceanographic applications and climate studies for years to come. These data are free and easy to access by anyone interested. Looking at the role of oceans in our daily lives, I am sure that this collection of scientific excellence will be valued by scientists of today and will inspire the next generation to carry these ideas into the future.




Treatise on Water Science


Book Description

Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth




Freshwater Microplastics


Book Description

This book is open access under a CC BY 4.0 license. This volume focuses on microscopic plastic debris, also referred to as microplastics, which have been detected in aquatic environments around the globe and have accordingly raised serious concerns. The book explores whether microplastics represent emerging contaminants in freshwater systems, an area that remains underrepresented to date. Given the complexity of the issue, the book covers the current state-of-research on microplastics in rivers and lakes, including analytical aspects, environmental concentrations and sources, modelling approaches, interactions with biota, and ecological implications. To provide a broader perspective, the book also discusses lessons learned from nanomaterials and the implications of plastic debris for regulation, politics, economy, and society. In a research field that is rapidly evolving, it offers a solid overview for environmental chemists, engineers, and toxicologists, as well as water managers and policy-makers.