Color Science and Photometry for Lighting with LEDs and Semiconductor Nanocrystals


Book Description

This book reviews the application of semiconductor nanocrystals also known as colloidal quantum dots (QDs) to LED lighting for indoors and outdoors as well as LED backlighting in displays, summarizing the color science of QDs for lighting and displays and presenting recent developments in QD-integrated LEDs and display research. By employing QDs in color-conversion LEDs, it is possible to simultaneously accomplish successful color rendition of the illuminated objects and a good spectral overlap between the emission spectrum of the light source and the sensitivity of the human eye at a warm white color temperature – something that is fundamentally challenging to achieve with conventional sources, such as incandescent and fluorescent lamps, and phosphor-based LEDs.




Color Quality of Semiconductor and Conventional Light Sources


Book Description

Meeting the need for a reliable publication on the topic and reflecting recent breakthroughs in the field, this is a comprehensive overview of color quality of solid-state light sources (LED-OLED and laser) and conventional lamps, providing academic researchers with an in-depth review of the current state while supporting lighting professionals in understanding, evaluating and optimizing illumination in their daily work.




Applied Nanophotonics


Book Description

An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.




A History of Light and Colour Measurement


Book Description

2003 Paul Bunge Prize of the Hans R. Jenemann Foundation for the History of Scientific Instruments Judging the brightness and color of light has long been contentious. Alternately described as impossible and routine, it was beset by problems both technical and social. How trustworthy could such measurements be? Was the best standard of inten




Color Quality of Semiconductor and Conventional Light Sources


Book Description

Meeting the need for a reliable publication on the topic and reflecting recent breakthroughs in the field, this is a comprehensive overview of color quality of solid-state light sources (LED-OLED and laser) and conventional lamps, providing academic researchers with an in-depth review of the current state while supporting lighting professionals in understanding, evaluating and optimizing illumination in their daily work.




A History of Light and Colour Measurement


Book Description

2003 Paul Bunge Prize of the Hans R. Jenemann Foundation for the History of Scientific Instruments Judging the brightness and color of light has long been contentious. Alternately described as impossible and routine, it was beset by problems both technical and social. How trustworthy could such measurements be? Was the best standard of intensity a gas lamp, an incandescent bulb, or a glowing pool of molten metal? And how much did the answers depend on the background of the specialist? A History of Light and Colour Measurement: Science in the Shadows is a history of the hidden workings of physical science-a technical endeavor embedded in a social context. It argues that this "undisciplined" subject, straddling academia, commerce, and regulation, may be typical not only of 20th century science, but of its future. Attracting scientists, engineers, industrialists, and artists, the developing subject produced a new breed of practitioners having mixed provenance. The new measurers of light had to decide the shape not only of their specialism but of their careers: were they to be a part of physics, engineering, or psychology? The physical scientists who dominated the subject into the early 20th century made their central aim the replacement of the problematic human eye with physical detectors of light. For psychologists between the wars, though, describing the complexity of color was more important than quantifying a handful of its dimensions. And after WWII, military designers shaped the subject of radiometry and subsumed photometry and colorimetry within it. Never attaining a professional cachet, these various specialists moved fluidly between science and technology; through government, industry, and administration.




Handbook of Nitride Semiconductors and Devices, GaN-based Optical and Electronic Devices


Book Description

The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 3 deals with nitride semiconductor devices and device technology. Among the application areas that feature prominently here are LEDs, lasers, FETs and HBTs, detectors and unique issues surrounding solar blind detection.




Physical Properties and Design of Light-emitting Devices Based on Organic Materials and Nanoparticles


Book Description

This thesis presents the detailed experimental and theoretical characterization of light-emitting devices (LEDs) based on organic semiconductors and colloidal quantum dots (QDs). This hybrid material system has several advantages over crystalline semiconductor technology; first, it is compatible with inexpensive fabrication methods such as solution processing and roll-to-roll deposition; second, hybrid devices can be fabricated on flexible plastic substrates and glass, avoiding expensive crystalline wafers; third, this technology is compatible with patterning methods, allowing multicolor light sources to be fabricated on the same substrate by simply changing the emissive colloidal QD layer. While the fabrication methods for QD-LEDs have been extensively investigated, the basic physical processes governing the performance of QD-LEDs remained unclear. In this thesis we use electronic and optical measurements combined with morphological analysis to understand the origins of QD-LED operation. We investigate charge transport and exciton energy transfer between organic materials and colloidal QDs and use our findings as guidelines for the device design and material choices. We fabricate hybrid QD-LEDs with efficiencies exceeding those of previously reported devices by 50-300%. Novel deposition methods allow us to fabricate QD-LEDs of controlled and tunable color by simply changing the emissive QD layer without altering the structure of organic charge transport layers. For example, we fabricate white light sources with tunable color temperature and color rendering index close to that of sunlight, inaccessible by crystalline semiconductor based lighting or fluorescent sources. Our physical modeling of hybrid QD-LEDs provides insights on carrier transport and exciton generation in hybrid organic-QD devices that are in agreement with our experimental data. The general nature of our experimental and theoretical findings makes them applicable to a variety of hybrid organic-QD optoelectronic devices such as LEDs, solar cells, photodetectors and chemical sensors.




Lectures on Light


Book Description

This book attempts to bridge in one step the enormous gap between introductory quantum mechanics and the research front of modern optics and scientific fields that make use of light. Hence, while it is suitable as a reference for the specialist in quantum optics, it will also be useful to the non-specialists from other disciplines who need to understand light and its uses in research. With a unique approach it introduces a single analytic tool, namely the density matrix, to analyze complex optical phenomena encountered in traditional as well as cross-disciplinary research. It moves swiftly in a tight sequence from elementary to sophisticated topics in quantum optics, including laser tweezers, laser cooling, coherent population transfer, optical magnetism, electromagnetically induced transparency, squeezed light, quantum information science and cavity quantum electrodynamics. A systematic approach is used that starts with the simplest systems - stationary two-level atoms - then introduces atomic motion, adds more energy levels, and moves on to discuss first-, second-, and third-order coherence effects that are the basis for analyzing new optical phenomena in incompletely characterized systems. Unconventional examples and original problems are used to engage even seasoned researchers in exploring a mathematical methodology with which they can tackle virtually any new problem involving light. An extensive bibliography makes connections with mathematical techniques and subject areas which can extend the benefit readers gain from each section. This revised edition includes over 40 new problems (for a total of 110 original problems with an instructor's solution manual), as well as completely new sections on quantum interference, Fano resonance, optical magnetism, quantum computation, laser cooling of solids, and irreducible representation of magnetic interactions. Literature references to current ultrafast science, nonlinear optics, x-ray and high-field physics topics have doubled at the end of chapters 5, 6, and 7; the subject index has also been significantly expanded.




Processing of Ceramics


Book Description

PROCESSING OF CERAMICS A firsthand account of the “transparent ceramics revolution” from one of the pioneers in the field Processing of Ceramics: Breakthroughs in Optical Materials is an in-depth survey of the breakthrough research and development of transparent ceramics, covering historical background, theory, manufacturing processes, and applications. Written by an internationally-recognized leader in the technology, this authoritative volume describes advances in optical grade ceramics over the past three decades—from the author’s first demonstration of laser ceramics in Japan in 1991 to new applications of transparent ceramics such as ceramic jewels, wireless heating elements, and mobile device displays. The author provides numerous development examples of laser ceramics, crystal and ceramic scintillators, magneto-optic transparent ceramics, optical ceramic phosphors for solid state lighting, and more. Detailed chapters cover topics such as the technical problems of conventional translucent and transparent ceramics, the characteristics of scintillation materials, single crystal and ceramic scintillator fabrication and optimization, and solid-state crystal growth (SSCG) methods for single crystal ceramics. Processing of Ceramics: Outlines the author’s 30 years of work in the area of transparent ceramics Provides a detailed history of the world's first ceramic laser development Demonstrates how laser oscillation using ceramic materials match or surpass high-quality single crystals Describes how innovative polycrystalline ceramics have transformed optical material development Includes extensive references, chapter introductions and summaries, and numerous graphs, tables, diagrams, and color images Processing of Ceramics is an invaluable resource for researchers, materials scientists, engineers, and other professionals across academic and industrial fields involved in the development and application of optical grade ceramics.