Combinatorial and Global Optimization


Book Description

This volume is a selection of refereed papers based on talks presented at a conference on "Combinatorial and Global Optimization" held at Crete, Greece." "Readership: Researchers in numerical & computational mathematics, optimization, combinatorics & graph theory, networking and materials engineering."--BOOK JACKET.




Handbook of Test Problems in Local and Global Optimization


Book Description

This collection of challenging and well-designed test problems arising in literature studies also contains a wide spectrum of applications, including pooling/blending operations, heat exchanger network synthesis, homogeneous azeotropic separation, and dynamic optimization and optimal control problems.




Combinatorial Optimization


Book Description

From the reviews: "About 30 years ago, when I was a student, the first book on combinatorial optimization came out referred to as "the Lawler" simply. I think that now, with this volume Springer has landed a coup: "The Schrijver". The box is offered for less than 90.- EURO, which to my opinion is one of the best deals after the introduction of this currency." OR-Spectrum




Combinatorial And Global Optimization


Book Description

Combinatorial and global optimization problems appear in a wide range of applications in operations research, engineering, biological science, and computer science. In combinatorial optimization and graph theory, many approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. Recent major successes based on these approaches include interior point algorithms for linear and discrete problems, the celebrated Goemans-Williamson relaxation of the maximum cut problem, and the Du-Hwang solution of the Gilbert-Pollak conjecture. Since integer constraints are equivalent to nonconvex constraints, the fundamental difference between classes of optimization problems is not between discrete and continuous problems but between convex and nonconvex optimization problems. This volume is a selection of refereed papers based on talks presented at a conference on “Combinatorial and Global Optimization” held at Crete, Greece.




Combinatorial Optimization


Book Description

This graduate-level text considers the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; local search heuristics for NP-complete problems, more. 1982 edition.




Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining


Book Description

Dynamic programming is an efficient technique for solving optimization problems. It is based on breaking the initial problem down into simpler ones and solving these sub-problems, beginning with the simplest ones. A conventional dynamic programming algorithm returns an optimal object from a given set of objects. This book develops extensions of dynamic programming, enabling us to (i) describe the set of objects under consideration; (ii) perform a multi-stage optimization of objects relative to different criteria; (iii) count the number of optimal objects; (iv) find the set of Pareto optimal points for bi-criteria optimization problems; and (v) to study relationships between two criteria. It considers various applications, including optimization of decision trees and decision rule systems as algorithms for problem solving, as ways for knowledge representation, and as classifiers; optimization of element partition trees for rectangular meshes, which are used in finite element methods for solving PDEs; and multi-stage optimization for such classic combinatorial optimization problems as matrix chain multiplication, binary search trees, global sequence alignment, and shortest paths. The results presented are useful for researchers in combinatorial optimization, data mining, knowledge discovery, machine learning, and finite element methods, especially those working in rough set theory, test theory, logical analysis of data, and PDE solvers. This book can be used as the basis for graduate courses.




Integer and Combinatorial Optimization


Book Description

Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION "This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list."-Optima "A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such formulations, as well as for understanding the structure of and solving the resulting integer programming problems."-Computing Reviews "[This book] can serve as a basis for various graduate courses on discrete optimization as well as a reference book for researchers and practitioners."-Mathematical Reviews "This comprehensive and wide-ranging book will undoubtedly become a standard reference book for all those in the field of combinatorial optimization."-Bulletin of the London Mathematical Society "This text should be required reading for anybody who intends to do research in this area or even just to keep abreast of developments."-Times Higher Education Supplement, London Also of interest . . . INTEGER PROGRAMMING Laurence A. Wolsey Comprehensive and self-contained, this intermediate-level guide to integer programming provides readers with clear, up-to-date explanations on why some problems are difficult to solve, how techniques can be reformulated to give better results, and how mixed integer programming systems can be used more effectively. 1998 (0-471-28366-5) 260 pp.




State of the Art in Global Optimization


Book Description

Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.




Combinatorial Optimization


Book Description

Perceptive text examines shortest paths, network flows, bipartite and nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. Suitable for courses in combinatorial computing and concrete computational complexity.