Combinatorial Matrix Classes


Book Description

A natural sequel to the author's previous book Combinatorial Matrix Theory written with H. J. Ryser, this is the first book devoted exclusively to existence questions, constructive algorithms, enumeration questions, and other properties concerning classes of matrices of combinatorial significance. Several classes of matrices are thoroughly developed including the classes of matrices of 0's and 1's with a specified number of 1's in each row and column (equivalently, bipartite graphs with a specified degree sequence), symmetric matrices in such classes (equivalently, graphs with a specified degree sequence), tournament matrices with a specified number of 1's in each row (equivalently, tournaments with a specified score sequence), nonnegative matrices with specified row and column sums, and doubly stochastic matrices. Most of this material is presented for the first time in book format and the chapter on doubly stochastic matrices provides the most complete development of the topic to date.




Combinatorial Matrix Theory


Book Description

This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.




Spectral Radius of Graphs


Book Description

Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees. Throughout, the text includes the valuable addition of proofs to accompany the majority of presented results. This enables the reader to learn tricks of the trade and easily see if some of the techniques apply to a current research problem, without having to spend time on searching for the original articles. The book also contains a handful of open problems on the topic that might provide initiative for the reader's research. - Dedicated coverage to one of the most prominent graph eigenvalues - Proofs and open problems included for further study - Overview of classical topics such as spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem




Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs


Book Description

On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o




Matrix Positivity


Book Description

This comprehensive reference, for mathematical, engineering and social scientists, covers matrix positivity classes and their applications.




A Second Course in Linear Algebra


Book Description

A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.




Analytic Combinatorics


Book Description

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.




Introduction to Applied Linear Algebra


Book Description

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.




Characteristic Classes


Book Description

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.




Combinatorics and Random Matrix Theory


Book Description

Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.