Combinatorial Optimization Problems in Planning and Decision Making


Book Description

The book focuses on the next fields of computer science: combinatorial optimization, scheduling theory, decision theory, and computer-aided production management systems. It also offers a quick introduction into the theory of PSC-algorithms, which are a new class of efficient methods for intractable problems of combinatorial optimization. A PSC-algorithm is an algorithm which includes: sufficient conditions of a feasible solution optimality for which their checking can be implemented only at the stage of a feasible solution construction, and this construction is carried out by a polynomial algorithm (the first polynomial component of the PSC-algorithm); an approximation algorithm with polynomial complexity (the second polynomial component of the PSC-algorithm); also, for NP-hard combinatorial optimization problems, an exact subalgorithm if sufficient conditions were found, fulfilment of which during the algorithm execution turns it into a polynomial complexity algorithm. Practitioners and software developers will find the book useful for implementing advanced methods of production organization in the fields of planning (including operative planning) and decision making. Scientists, graduate and master students, or system engineers who are interested in problems of combinatorial optimization, decision making with poorly formalized overall goals, or a multiple regression construction will benefit from this book.




Industrial Applications of Combinatorial Optimization


Book Description

Industries rely more and more on advanced technology. Accelerated computer evolution makes large-scale computation practical. Many enterprises are be ginning to benefit from more efficient allocation of resources and more effective planning, scheduling, manufacturing, and distribution by adopting state-of-the art decision support systems. Academics increasingly emphasize application driven research. All these forces have moved optimization from a pure class room and textbook terminology to an accepted tool in today's business world. This book chronicles and describes applications of combinatorial optimization in industry. A wide range of applications is included: manpower planning • production planning • job sequencing and scheduling • manufacturing layout design • facility planning • vehicle scheduling and routing • retail seasonal planning • I! space shuttle scheduling, and telecommunication network design . • The applications covered in this book comprise a representative set of industry sectors including electronics, airlines, manufacturing, tobacco, retail, telecom munication, defense, and livestock. These examples should encourage opera tions researchers and applied mathematicians by pointing out how the impor tance and practicality of optimization is starting to be realized by the manage ment of various organizations and how some pioneering developments in this field are beginning to bear fruit.




Multi-Objective Combinatorial Optimization Problems and Solution Methods


Book Description

Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms




Combinatorial Optimization and Decision-making with Applications in Computational Sustainability


Book Description

Combinatorial optimization and decision-making problems are critical in many real-world computational sustainability problems. The main goals for these projects are often to provide decision-support tools for various groups and institutions to help solve complex computation problems encountered in sustainable planning and development. This thesis mainly focuses on two real-world applications of combinatorial optimization and decision-making in computational sustainability. The first is a multiobjective optimization problem inspired by the real-world problem of placing hydropower dams in the Amazon basin. We propose a fully polynomial-time approximation scheme based on Dynamic Programming (DP) for computing the Pareto frontier within an arbitrarily small error margin on tree-structured networks. We also developed a complementary mixed integer programming (MIP) approach for approximating the Pareto frontier and methods for approximating high-dimensional Pareto frontiers. The second is an online matching problem coordinating citizen scientists for invasive species survey efforts. We developed a learning-augmented matching algorithm that can utilize partial information and provides good performance and approximation guarantees. For both applications, we provide not only practical solutions to real-world problems but also novel computational algorithms and techniques.




Complexity and Approximation


Book Description

This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.




Advances In Combinatorial Optimization: Linear Programming Formulations Of The Traveling Salesman And Other Hard Combinatorial Optimization Problems


Book Description

Combinational optimization (CO) is a topic in applied mathematics, decision science and computer science that consists of finding the best solution from a non-exhaustive search. CO is related to disciplines such as computational complexity theory and algorithm theory, and has important applications in fields such as operations research/management science, artificial intelligence, machine learning, and software engineering.Advances in Combinatorial Optimization presents a generalized framework for formulating hard combinatorial optimization problems (COPs) as polynomial sized linear programs. Though developed based on the 'traveling salesman problem' (TSP), the framework allows for the formulating of many of the well-known NP-Complete COPs directly (without the need to reduce them to other COPs) as linear programs, and demonstrates the same for three other problems (e.g. the 'vertex coloring problem' (VCP)). This work also represents a proof of the equality of the complexity classes 'P' (polynomial time) and 'NP' (nondeterministic polynomial time), and makes a contribution to the theory and application of 'extended formulations' (EFs).On a whole, Advances in Combinatorial Optimization offers new modeling and solution perspectives which will be useful to professionals, graduate students and researchers who are either involved in routing, scheduling and sequencing decision-making in particular, or in dealing with the theory of computing in general.




Combinatorial Engineering of Decomposable Systems


Book Description

Combinatorial Engineering of Decomposable Systems presents a morphological approach to the combinatorial design/synthesis of decomposable systems. Applications involve the following: design (e.g., information systems; user's interfaces; educational courses); planning (e.g., problem-solving strategies; product life cycles; investment); metaheuristics for combinatorial optimization; information retrieval; etc.




Combinatorial Optimization


Book Description

This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial optimization.




Combinatorial Optimization Under Uncertainty


Book Description

This book discusses the basic ideas, underlying principles, mathematical formulations, analysis and applications of the different combinatorial problems under uncertainty and attempts to provide solutions for the same. Uncertainty influences the behaviour of the market to a great extent. Global pandemics and calamities are other factors which affect and augment unpredictability in the market. The intent of this book is to develop mathematical structures for different aspects of allocation problems depicting real life scenarios. The novel methods which are incorporated in practical scenarios under uncertain circumstances include the STAR heuristic approach, Matrix geometric method, Ranking function and Pythagorean fuzzy numbers, to name a few. Distinct problems which are considered in this book under uncertainty include scheduling, cyclic bottleneck assignment problem, bilevel transportation problem, multi-index transportation problem, retrial queuing, uncertain matrix games, optimal production evaluation of cotton in different soil and water conditions, the healthcare sector, intuitionistic fuzzy quadratic programming problem, and multi-objective optimization problem. This book may serve as a valuable reference for researchers working in the domain of optimization for solving combinatorial problems under uncertainty. The contributions of this book may further help to explore new avenues leading toward multidisciplinary research discussions.




Decision Diagrams for Optimization


Book Description

This book introduces a novel approach to discrete optimization, providing both theoretical insights and algorithmic developments that lead to improvements over state-of-the-art technology. The authors present chapters on the use of decision diagrams for combinatorial optimization and constraint programming, with attention to general-purpose solution methods as well as problem-specific techniques. The book will be useful for researchers and practitioners in discrete optimization and constraint programming. "Decision Diagrams for Optimization is one of the most exciting developments emerging from constraint programming in recent years. This book is a compelling summary of existing results in this space and a must-read for optimizers around the world." [Pascal Van Hentenryck]