Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory


Book Description

Free probability theory, introduced by Voiculescu, has developed very actively in the last few years and has had an increasing impact on quite different fields in mathematics and physics. Whereas the subject arose out of the field of von Neumann algebras, presented here is a quite different view of Voiculescu's amalgamated free product. This combinatorial description not only allows re-proving of most of Voiculescu's results in a concise and elegant way, but also opens the way for many new results. Unlike other approaches, this book emphasizes the combinatorial structure of the concept of ``freeness''. This gives an elegant and easily accessible description of freeness and leads to new results in unexpected directions. Specifically, a mathematical framework for otherwise quite ad hoc approximations in physics emerges.




Free Probability and Random Matrices


Book Description

This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.




Proceedings of the Conference Quantum Probability and Infinite Dimensional Analysis


Book Description

This volume consists of 18 research papers reflecting the impressive progress made in the field. It includes new results on quantum stochastic integration, the stochastic limit, quantum teleportation and other areas. Contents: Markov Property -- Recent Developments on the Quantum Markov Property (L Accardi & F Fidaleo); Stationary Quantum Stochastic Processes from the Cohomological Point of View (G G Amosov); The Feller Property of a Class of Quantum Markov Semigroups II (R Carbone & F Fagnola); Recognition and Teleportation (K-H Fichtner et al.); Prediction Errors and Completely Positive Maps (R Gohm); Multiplicative Properties of Double Stochastic Product Integrals (R L Hudson); Isometric Cocycles Related to Beam Splittings (V Liebscher); Multiplicativity via a Hat Trick (J M Lindsay & S J Wills); Dilation Theory and Continuous Tensor Product Systems of Hilbert Modules (M Skeide); Quasi-Free Fermion Planar Quantum Stochastic Integrals (W J Spring & I F Wilde); and other papers.




New Trends in Applied Analysis and Computational Mathematics


Book Description

The volume contains original research papers as the Proceedings of the International Conference on Advances in Mathematics and Computing, held at Veer Surendra Sai University of Technology, Odisha, India, on 7-8 February, 2020. It focuses on new trends in applied analysis, computational mathematics and related areas. It also includes certain new models, image analysis technique, fluid flow problems, etc. as applications of mathematical analysis and computational mathematics. The volume should bring forward new and emerging topics of mathematics and computing having potential applications and uses in other areas of sciences. It can serve as a valuable resource for graduate students, researchers and educators interested in mathematical tools and techniques for solving various problems arising in science and engineering.




Encyclopedia of Nonlinear Science


Book Description

In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.




Mathematical Physics II


Book Description

The charm of Mathematical Physics resides in the conceptual difficulty of understanding why the language of Mathematics is so appropriate to formulate the laws of Physics and to make precise predictions. Citing Eugene Wigner, this “unreasonable appropriateness of Mathematics in the Natural Sciences” emerged soon at the beginning of the scientific thought and was splendidly depicted by the words of Galileo: “The grand book, the Universe, is written in the language of Mathematics.” In this marriage, what Bertrand Russell called the supreme beauty, cold and austere, of Mathematics complements the supreme beauty, warm and engaging, of Physics. This book, which consists of nine articles, gives a flavor of these beauties and covers an ample range of mathematical subjects that play a relevant role in the study of physics and engineering. This range includes the study of free probability measures associated with p-adic number fields, non-commutative measures of quantum discord, non-linear Schrödinger equation analysis, spectral operators related to holomorphic extensions of series expansions, Gibbs phenomenon, deformed wave equation analysis, and optimization methods in the numerical study of material properties.




Topics in Contemporary Mathematical Analysis and Applications


Book Description

Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas. Aims at enriching the understanding of methods, problems, and applications Offers an understanding of research problems by presenting the necessary developments in reasonable details Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems This book is written for individual researchers, educators, students, and department libraries.




Quantum Probability and Spectral Analysis of Graphs


Book Description

This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.




The Semicircle Law, Free Random Variables and Entropy


Book Description

The book treats free probability theory, which has been extensively developed since the early 1980s. The emphasis is put on entropy and the random matrix model approach. The volume is a unique presentation demonstrating the extensive interrelation between the topics. Wigner's theorem and its broad generalizations, such as asymptotic freeness of independent matrices, are explained in detail. Consistent throughout the book is the parallelism between the normal and semicircle laws. Voiculescu's multivariate free entropy theory is presented with full proofs and extends the results to unitary operators. Some applications to operator algebras are also given. Based on lectures given by the authors in Hungary, Japan, and Italy, the book is a good reference for mathematicians interested in free probability theory and can serve as a text for an advanced graduate course. This book brings together both new material and recent surveys on some topics in differential equations that are either directly relevant to, or closely associated with, mathematical physics. Its topics include asymptotic formulas for the ground-state energy of fermionic gas, renormalization ideas in quantum field theory from perturbations of the free Hamiltonian on the circle, $J$-selfadjoint Dirac operators, spectral theory of Schrodinger operators, inverse problems, isoperimetric inequalities in quantum mechanics, Hardy inequalities, and non-adiabatic transitions. Excellent survey articles on Dirichlet-Neumann inverse problems on manifolds (by Uhlmann), numerical investigations associated with Laplacian eigenvalues on planar regions (by Trefethen), Snell's law and propagation of singularities in the wave equation (by Vasy), random operators on tree graphs (by Aizenmann) make this book interesting and valuable for graduate students, young mathematicians, and physicists alike.




Quantum Symmetries


Book Description

Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems. A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions. The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The latter applications will also be of interest to theoretical and mathematical physicists working in quantum theory.