Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants


Book Description

The second edition of this book includes the most up-to-date details on the advantages of Nuclear Air-Brayton Power Plant Cycles for advanced reactors. It demonstrates significant advantages for typical sodium cooled reactors and describes how these advantages will grow as higher temperature systems (molten salts) are developed. It also describes how a Nuclear Air-Brayton system can be integrated with significant renewable (solar and wind) energy systems to build a low carbon grid. Starting with basic principles of thermodynamics as applied to power plant systems, it moves on to describe several types of Nuclear Air-Brayton systems that can be employed to meet different requirements. It provides estimates of component sizes and performance criteria for Small Modular Reactors (SMR). This book has been revised to include updated tables and significant new results that have become available for intercooled systems in the time since the previous edition published. In this edition also, the steam tables have been updated and Chapters 9 and 10 have been rewritten to keep up with the most up-to- date technology and current research.




Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants


Book Description

Introduces the concept of combined cycles for next generation nuclear power plants, explaining how recent advances in gas turbines have made these systems increasingly desirable for efficiency gains and cost-of-ownership reduction Promulgates modelling and analysis techniques to identify opportunities for increased thermodynamic efficiency and decreased water usage over current Light Water Reactor (LWR) systems Examines all power conversion aspects, from the fluid exiting the reactor to energy releases into the environment, with special focus on heat exchangers and turbo-machinery Provides examples of small projects to facilitate nuanced understanding of the theories and implementation of combined-cycle nuclear plants This book explores combined cycle driven efficiency of next generation nuclear power plants, and describes how to model and analyze a thermally heated multi-turbine power conversion system operating with atmospheric open air as the working fluid. The included studies are intended to identify paths for future work on next generation nuclear power plants (GEN-IV and beyond), leveraging advances in natural-gas-fired turbines that enable coupling salt-cooled, helium-cooled, and sodium-cooled reactors to a Nuclear Air-Brayton Combined Cycle (NACC). These reactors provide the option of operating base-load nuclear plants with variable electricity output to the grid using natural gas or stored heat to produce peak power. The author describes overall system architecture, components, and detailed modeling results of Brayton-Rankine Combined Cycle power conversion systems and Recuperated Brayton Cycle systems, since they offer the highest overall energy conversion and output efficiencies. With ever-higher temperatures predicted in new generations of power plants, this book's investigation of potential avenues for thermodynamic efficiency gains will be of great interest to nuclear engineers and researchers, as well as power plant operators and students.




Application of Compact Heat Exchangers For Combined Cycle Driven Efficiency In Next Generation Nuclear Power Plants


Book Description

Covers the fundamentals of combined-cycle plants to provide background for understanding the progressive design approaches at the heart of the text Discusses the types of compact heat exchanger surfaces, suggesting novel designs that can be considered for optimal cost effectiveness and maximum energy production Undertakes the thermal analysis of these compact heat exchangers throughout the life cycle, from the design perspective through operational and safety assurance stages This book describes the quest to create novel designs for compact heat exchangers in support of emergent combined cycle nuclear plants. The text opens with a concise explanation of the fundamentals of combined cycles, describing their efficiency impacts on electrical power generation systems. It then covers the implementation of these principles in nuclear reactor power systems, focusing on the role of compact heat exchangers in the combined cycle loop and applying them to the challenges facing actual nuclear power systems. The various types of compact heat exchanger surfaces and designs are given thorough consideration before the author turns his attention to discussing current and projected reactor systems, and how the novel design of these compact heat e xchangers can be applied to innovative designs, operation and safety analyses to optimize thermal efficiency. The book is written at an undergraduate level, but will be useful to practicing engineers and scientists as well.




Heat Pipe Applications in Fission Driven Nuclear Power Plants


Book Description

This book presents a new and innovative approach for the use of heat pipes and their application in a number of industrial scenarios, including space and nuclear power plants. The book opens by describing the heat pipe and its concept, including sizing, composition and binding energies. It contains mathematical models of high and low temperature pipes along with extensive design and manufacturing models, characteristics and testing programs. A detailed design and safety analysis concludes the book, emphasizing the importance of heat pipe implementation within the main cooling system and within the core of the reactor, making this book a useful resource for students, engineers, and researchers.




Thermal-Hydraulic Analysis of Nuclear Reactors


Book Description

This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.




Small Modular Reactors as Renewable Energy Sources


Book Description

This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.




Introduction to Energy Essentials


Book Description

Energy managers need to learn new and diverse ways to approach energy management in their company's assets as technology continues to evolve. Built into one cohesive and fundamental resource, Introduction to Energy Essentials: Insight into Nuclear, Renewable, and Non-Renewable Energies delivers an informative tool to understand the main steps for introducing and maintaining an energy management system (EnMS). Starting with a high-level introduction, the reference then takes a structured approach and dives into different sources of energy along with their contribution to energy efficiency, focusing on nuclear power, renewable and non-renewable energies. Multiple options are further discussed including economic considerations and cost comparisons per energy source, energy storage technology, and how to introduce an energy management system into your company. More advanced topics include nuclear reactor power plant systems and their thermal hydraulic analysis as well as cyber resiliency for future electric power and well plant control systems. Authored by experts, Introduction to Energy Essentials: Insight into Nuclear, Renewable, and Non-Renewable Energies gives today's energy managers and engineers a solid starting point to meeting the energy demands of today and in the future. - Understand key concepts, techniques, and tools surrounding energy management - Learn how to include smarter energy efficiency in your daily management decisions - Gain the fundamental technical skills and knowledge on renewable and non-renewable energy systems




Molten Salt Reactors and Integrated Molten Salt Reactors


Book Description

Understanding the evolution and advances of energy conversion is critical to meet today's energy demands while lowering emissions in the fight against climate change. One advancement within nuclear plants that continues to gain interest is molten salt reactors and integrated molten salt reactors, which are the new proposed generation IV small modular reactors. To get up to speed on the latest technology, Molten Salt Reactors and Integrated Molten Salt Reactors: Integrated Power Conversion delivers a critical reference covering the main steps for the application of these reactors. Creating a more environmentally friendly energy production methodology, the reference reviews the past, current, and future states of the reactors including pros and cons, designs and safety features involved, and additional references. Included in the reference is a new approach to energy conversion technology, including coverage on material, economic, and technical challenges towards waste heat recovery, power conversion systems, and advanced computational materials proposed for generation IV systems. Advanced nuclear open air-brayton cycles are also included for higher efficiency. Rounding out with guidance on avoiding salt freezing and salt cleanup for fission and fusion reactors, Molten Salt Reactors and Integrated Molten Salt Reactors: Integrated Power Conversion provides today's nuclear engineer and power plant engineer with the impactful content of rising efficiency in molten salt reactors, ultimately leading to more efficient and affordable electricity. - Gain the latest applications and steps to implement modular reactors, including safety and technical considerations - Learn an innovative approach to nuclear air combined cycles (NACC), bringing down the costs of producing electricity in nuclear power plants - Practice techniques and computer modeling with additional appendices that include experimental validation methods and computer code results




Hydrogen Energy


Book Description

This book describes the challenges and solutions the energy sector faces by shifting towards a hydrogen based fuel economy. The most current and up-to-date efforts of countries and leaders in the automotive sector are reviewed as they strive to develop technology and find solutions to production, storage, and distribution challenges. Hydrogen fuel is a zero-emission fuel when burned with oxygen and is often used with electrochemical cells, or combustion in internal engines, to power vehicles and electric devices. This book offers unique solutions to integrating renewable sources of energy like wind or solar power into the production of hydrogen fuel, making it a cost effective, efficient and truly renewable alternative fuel.




Nuclear Energy for Hydrogen Generation through Intermediate Heat Exchangers


Book Description

This book describes recent technological developments in next generation nuclear reactors that have created renewed interest in nuclear process heat for industrial applications. The author’s discussion mirrors the industry’s emerging focus on combined cycle Next Generation Nuclear Plants’ (NGNP) seemingly natural fit in producing electricity and process heat for hydrogen production. To utilize this process heat, engineers must uncover a thermal device that can transfer the thermal energy from the NGNP to the hydrogen plant in the most performance efficient and cost effective way possible. This book is written around that vital quest, and the author describes the usefulness of the Intermediate Heat Exchanger (IHX) as a possible solution. The option to transfer heat and thermal energy via a single-phase forced convection loop where fluid is mechanically pumped between the heat exchangers at the nuclear and hydrogen plants is presented, and challenges associated with this tactic are discussed. As a second option, heat pipes and thermosyphons, with their ability to transport very large quantities of heat over relatively long distance with small temperature losses, are also examined.