Book Description
A comprehensive, one-stop synthesis of landslide science, for researchers and graduate students in geomorphology, engineering geology and geophysics.
Author : John J. Clague
Publisher : Cambridge University Press
Page : 435 pages
File Size : 42,25 MB
Release : 2012-08-23
Category : Science
ISBN : 1107002060
A comprehensive, one-stop synthesis of landslide science, for researchers and graduate students in geomorphology, engineering geology and geophysics.
Author : Stephen G. Evans
Publisher : Springer Science & Business Media
Page : 659 pages
File Size : 21,54 MB
Release : 2007-05-17
Category : Science
ISBN : 1402040377
Amongst the thematic topics discussed are global frequency, impacts on society, analysis of initial rock slope failure, monitoring of rock slope movement, analysis and modeling of post-failure behaviour, volcanic landslides, and influences of massive rock slope failure on the geomorphological evolution of mountain regions. Regional contributions include reports on rockslides and rock avalanches in Norway, western Canada, the Andes of Argentina, the Karakoram Himalaya, the European Alps, the Appennines, and the mountains of Central Asia. Rockslides and rock avalanches in the Central Asian republics of the former Soviet Union are discussed in detail for the first time in an English-language book. These landslides include the 1911 Usoi rockslide, that dammed 75 km-long Lake Sarez, and the 1949 Khait rock avalanche that may have killed up to 28,000 people. Both landslides were earthquake-triggered and both are located in Tajikistan. An additional highlight is a detailed description and analysis of large-scale artificial rock avalanches triggered by underground nuclear explosions during the testing programme of the former Soviet Union.
Author : Duncan C. Wyllie
Publisher : CRC Press
Page : 803 pages
File Size : 23,59 MB
Release : 2017-09-18
Category : Technology & Engineering
ISBN : 1498786286
Rock Slope Engineering covers the investigation, design, excavation and remediation of man-made rock cuts and natural slopes, primarily for civil engineering applications. It presents design information on structural geology, shear strength of rock and ground water, including weathered rock. Slope design methods are discussed for planar, wedge, circular and toppling failures, including seismic design and numerical analysis. Information is also provided on blasting, slope stabilization, movement monitoring and civil engineering applications. This fifth edition has been extensively up-dated, with new chapters on weathered rock, including shear strength in relation to weathering grades, and seismic design of rock slopes for pseudo-static stability and Newmark displacement. It now includes the use of remote sensing techniques such as LiDAR to monitor slope movement and collect structural geology data. The chapter on numerical analysis has been revised with emphasis on civil applications. The book is written for practitioners working in the fields of transportation, energy and industrial development, and undergraduate and graduate level courses in geological engineering.
Author : Michel Jaboyedoff
Publisher : Geological Society of London
Page : 296 pages
File Size : 41,60 MB
Release : 2011
Category : Science
ISBN : 9781862393240
Usually geomorphology, structural geology and engineering geology provide descriptions of slope instability in quite distinctive ways. This new research is based on combined approaches to providing an integrated view of the operative slope processes. 'Slope Tectonics' is the term adopted here to refer to those deformations that are induced or fully controlled by the slope morphology, and that generate features which can be compared to those created by tectonic activity. Such deformation can be induced by the stress field in a slope which is mainly controlled by gravity, topography and the geological setting created by the geodynamic context. The content of this book includes slope-deformation characterization using morphology and evolution, mechanical behaviour of the material, modes of failure and collapse, influence of lithology and structural features, and the role played by controlling factors.
Author : Lulu Zhang
Publisher : CRC Press
Page : 374 pages
File Size : 45,2 MB
Release : 2018-09-03
Category : Technology & Engineering
ISBN : 1498752861
Rainfall-induced landslides are common around the world. With global climate change, their frequency is increasing and the consequences are becoming greater. Previous studies assess them mostly from the perspective of a single discipline—correlating landslides with rainstorms, geomorphology and hydrology in order to establish a threshold prediction value for rainfall-induced landslides; analyzing the slope’s stability using a geomechanical approach; or assessing the risk from field records. Rainfall Induced Soil Slope Failure: Stability Analysis and Probabilistic Assessment integrates probabilistic approaches with the geotechnical modeling of slope failures under rainfall conditions with unsaturated soil. It covers theoretical models of rainfall infiltration and stability analysis, reliability analysis based on coupled hydro-mechanical modelling, stability of slopes with cracks, gravels and spatial heterogenous soils, and probabilistic model calibration based on measurement. It focuses on the uncertainties involved with rainfall-induced landslides and presents state-of-the art techniques and methods which characterize the uncertainties and quantify the probabilities and risk of rainfall-induced landslide hazards. Additionally, the authors cover: The failure mechanisms of rainfall-induced slope failure Commonly used infiltration and stability methods The infiltration and stability of natural soil slopes with cracks and colluvium materials Stability evaluation methods based on probabilistic approaches The effect of spatial variability on unsaturated soil slopes and more
Author : Yang Hsien Huang
Publisher :
Page : 0 pages
File Size : 25,26 MB
Release : 2014
Category : Embankments
ISBN : 9780784412886
Yang H. Huang presents fundamental principles and methods for using the limit equilibrium method in analyzing slope stability for the safe design of earth slopes.
Author : Tim Davies
Publisher : Elsevier
Page : 698 pages
File Size : 38,58 MB
Release : 2021-10-17
Category : Science
ISBN : 0128226455
Landslide Hazards, Risks and Disasters Second Edition makes a broad but detailed examination of major aspects of mass movements and their consequences, and provides knowledge to form the basis for more complete and accurate monitoring, prediction, preparedness and reduction of the impacts of landslides on society. The frequency and intensity of landslide hazards and disasters has consistently increased over the past century, and this trend will continue as society increasingly utilises steep landscapes. Landslides and related phenomena can be triggered by other hazard and disaster processes – such as earthquakes, tsunamis, volcanic eruptions and wildfires – and they can also cause other hazards and disasters, making them a complex multi-disciplinary challenge. This new edition of Landslide Hazards, Risks and Disasters is updated and includes new chapters, covering additional topics including rockfalls, landslide interactions and impacts and geomorphic perspectives. Knowledge, understanding and the ability to model landslide processes are becoming increasingly important challenges for society extends its occupation of increasingly hilly and mountainous terrain, making this book a key resource for educators, researchers and disaster managers in geophysics, geology and environmental science. - Provides an interdisciplinary perspective on the geological, seismological, physical, environmental and social impacts of landslides - Presents the latest research on causality, impacts and landslide preparedness and mitigation. Includes numerous tables, maps, diagrams, illustrations, photographs and video captures of hazardous processes - Discusses steps for planning for and responding to landslide hazards, risks and disasters
Author : Malcolm G. Anderson
Publisher : World Bank Publications
Page : 447 pages
File Size : 25,28 MB
Release : 2013-01-22
Category : Nature
ISBN : 0821394916
The handbook details the MoSSaiC (Management of Slope Stability in Communities) methodology, which aims to create behavioral change in vulnerable communities in developing countries. Focusing on maximizing within-country capacity to deliver landslide mitigation measures on the ground, it provides an end-to-end blueprint for the mitigation process.
Author : Thomas Glade
Publisher : John Wiley & Sons
Page : 824 pages
File Size : 36,19 MB
Release : 2006-01-04
Category : Science
ISBN : 0470012641
With the increasing need to take an holistic view of landslide hazard and risk, this book overviews the concept of risk research and addresses the sociological and psychological issues resulting from landslides. Its integrated approach offers understanding and ability for concerned organisations, landowners, land managers, insurance companies and researchers to develop risk management solutions. Global case studies illustrate a variety of integrated approaches, and a concluding section provides specifications and contexts for the next generation of process models.
Author : Lanru Jing
Publisher : Elsevier
Page : 563 pages
File Size : 10,80 MB
Release : 2007-07-18
Category : Science
ISBN : 0080551858
This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented.· Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow· Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media· Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models