Combustion and Emissions of a Diesel Engine Fueled with Diesel-Biodiesel-Ethanol Blends and Supplemented with Intake CO2 Charge Dilution


Book Description

This study investigated the influence of a four-cylinder naturally aspirated direct-injection diesel engine fueled with diesel-biodiesel-ethanol blended (DBE) fuels tested at a steady state speed of 1800 rev/min under different engine loads, ethanol volume and intake carbon dioxide (CO2) dilution ratios on engine performance, combustion characteristics, regulated gaseous emissions, and soot agglomerates. Overall, the experimental results indicate that DBE blends can in general improve brake thermal efficiency (BTE) and reduce nitrogen oxides (NOx), carbon monoxide (CO), CO2, volatile organic fractions, particulate mass (PM), and particulate number (PN) concentrations, while brake-specific fuel consumption (BSFC) and hydrocarbon (HC) might increase slightly. Compared with ultra-low-sulfur diesel, DBE blends can maintain a good tradeoff relationship among PM-PN-NOx. Compared with biodiesel, the blended fuels perform better in suppressing brake-specific particle number emissions (BSPN), leading to a reduction of ultrafine and nanoparticle numbers. The combined effect of DBE blends with intake CO2 dilution has marginal effects on BSFC and BTE, significantly reducing NOx emission while slightly increasing particulate emissions. On particulate characteristics, DBE blends produce soots with curved, tortuous, and disorganized nanostructures with low soot burnout temperature and strong oxidation rate favoring PM-PN reduction.




Developments in Combustion Technology


Book Description

Over the past few decades, exciting developments have taken place in the field of combustion technology. The present edited volume intends to cover recent developments and provide a broad perspective of the key challenges that characterize the field. The target audience for this book includes engineers involved in combustion system design, operational planning and maintenance. Manufacturers and combustion technology researchers will also benefit from the timely and accurate information provided in this work. The volume is organized into five main sections comprising 15 chapters overall: - Coal and Biofuel Combustion - Waste Combustion - Combustion and Biofuels in Reciprocating Engines - Chemical Looping and Catalysis - Fundamental and Emerging Topics in Combustion Technology




Maritime Technology and Engineering 5 Volume 2


Book Description

This set of two volumes comprises the collection of the papers presented at the 5th International Conference on Maritime Technology and Engineering (MARTECH 2020) that was held in Lisbon, Portugal, from 16 to 19 November 2020. The Conference has evolved from the series of biennial national conferences in Portugal, which have become an international event, and which reflect the internationalization of the maritime sector and its activities. MARTECH 2020 is the fifth of this new series of biennial conferences. The set comprises 180 contributions that were reviewed by an International Scientific Committee. Volume 2 is dedicated to ship performance and hydrodynamics, including CFD, maneuvering, seakeeping, moorings and resistance. In addition, it includes sections on ship machinery, renewable energy, fishing and aquaculture, coastal structures, and waves and currents.




Biodiesel, Combustion, Performance and Emissions Characteristics


Book Description

This book focuses on biodiesel combustion, including biodiesel performance, emissions and control. It brings together a range of international research in combustion studies in order to offer a comprehensive resource for researchers, students and academics alike. The book begins with an introduction to biodiesel combustion, followed by a discussion of NOx formation routes. It then addresses biodiesel production processes and oil feedstocks in detail, discusses the physiochemical properties of biodiesel, and explores the benefits and drawbacks of these properties. Factors influencing the formation of emissions, including NOx emissions, are also dealt with thoroughly. Lastly, the book discusses the mechanisms of pollution and different approaches used to reduce pollutants in connection with biodiesel. Each approach is considered in detail, and diagrams are provided to illustrate the points in line with industry standard control mechanisms.







Characterization of Biodiesel as a Fuel in a Compression Ignition (CI) Engine with Additives


Book Description

Compression ignition engines have been used widely in the transportation sector and power generation for the decades. These engines are less fuel consumed with higher brake thermal efficiency. However, compression ignition engines produce higher pollution in NOx and PM emission as well as cause several negative drawbacks to the environment. Most countries in the world have regulated several regulations to reduce the emission from the engines. Other than that, the introduction of biodiesel in the engines is beneficial and proven to reduce the emission significantly. However, biodiesel has higher density and viscosity with lower heating value as compared to mineral diesel. Fuel additives are among other methods that proven to modify the properties of biodiesel to be comparable with mineral diesel without doing any engine modification. Although fuel additives' ability to reduce harmful emissions is well known in the literature, the mechanism for these additives is not well understood when operated in the four-stroke, four-cylinder diesel engines. Two alcohol-based additives, methanol and ethanol were diluted with B 20 blend (20% biodiesel + 80% mineral diesel) with the formulation of 5% by volume. The test fuels; mineral diesel, B100 (palm-diesel), B20 blend and B20-alcohol blends (B20 E5 and B20 M5) were investigated on a Mitsubishi 4D68 four stroke, four-cylinder water-cooled diesel engine incorporating sensors for in-cylinder pressure measurement and thermocouples. There were two operating modes dealing with these fuels, which the first mode been conducted on increasing engine speeds at 50% throttle position. While as for the second mode, these fuels were operated at three different engine loads, 0.05 MPa, 0.4 MPa and 0.7 MPa with the engine constant speed of 2500 rpm. The effect of test fuels on brake power, brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), combustion (in-cylinder pressure, rate of heat release, cylinder temperature) and NOx, NO, CO and CO2 emissions were investigated. Results found that the performance of diesel engine improved with the use of alcohol (ethanol and methanol) in the B20 blends especially in comparison to mineral diesel, B100 and B20. Overall, the results indicated that when compared to mineral diesel, B100, B20, B20 E5 and B20 M5 have higher brake thermal efficiency. The use of alcohol as a fuel additive in the B20 blend has improved the combustion characteristics when the loads were applied to the engine. Besides, the exhaust emission for the B20 E5 and B20 M5 were fairly reduced when compared to mineral diesel.




Diesel Emissions and Their Control


Book Description

This book will assist readers in meeting today's tough challenges of improving diesel engine emissions, diesel efficiency, and public perception of the diesel engine. It can be used as an introductory text, while at the same time providing practical information that will be useful for experienced readers. This comprehensive book is well illustrated with more than 560 figures and 80 tables. Each main section is broken down into chapters that offer more specific and extensive information on current issues, as well as answers to technical questions.







Laboratory Experiments on the Emissions from Different Biodiesel Blends in Comparison to B20 and Ultra Low Sulfur Diesel


Book Description

Biodiesel has been a promising clean alternative fuel to fossil fuels, which reduces the emissions that are released by fossil fuels and possibly reduces the energy crisis caused by the exhaustion of petroleum resources in the near future. Biodiesel is replacing diesel as an alternative fuel for internal combustion engines. Previous research studies have shown that biodiesel greatly reduces carbon monoxide (CO), hydrocarbon (HC) and particulate matter (PM) emissions compared to diesel fuels. At present, B20 (20% biodiesel in the total fuel mix) is being used commonly due to its material compatibility to changing weather conditions, emission benefits and costs. In this study biodiesel blends B5, B10 and B50 were combusted to investigate how the engine conditions influence the emission concentrations of H2, CO, CH4, CO2, N2 and morphological data of particulate matter. Different emission samples were collected for a certain range of temperatures and pressures. The samples were analyzed using Gas Chromatography and the particulate matter was analyzed using Scanning Electron Microscope images. The samples of different biodiesel blends were then compared with the emissions from B20 and Ultra Low Sulfur Diesel at the same temperature and pressure ranges. From the results under varied tested conditions it has been inferred that, for low H2 emissions, B5 combustion under low temperatures and high pressures is preferred. For low CO emissions, B20 combustion under high temperatures and pressures is preferred. For low N2 emissions, B5 combustion under low temperatures and high pressures is preferred. For low CH4 emissions, B5 combustion under low temperatures and high pressures is preferred. For low CO2 emissions, ULSD combustion under low temperatures and low pressures is preferred. H2 emissions have decreased as the biodiesel blend increased. CO was observed to increase with the blend. The emissions were comparatively lower under low temperatures. N2 showed an increasing trend with the blend. Low temperatures and high pressure reduced the emissions. Not much variation was observed for CH4 for the blends under the tested conditions. The CO2 emission from the results was observed to be on an increasing trend except for B20. Under higher pressures and temperatures CO2 emissions were lower for all the blends except for B20. ULSD showed lower emissions under low temperatures and varying pressures compared to biodiesel. B5 showed lower emissions under lower temperatures and higher pressures. B10 showed the least emissions under lower temperatures and lower pressures. B20 showed lower emissions under high pressures and varying temperatures. B50 showed the least emissions under lower temperatures and higher pressures except for CO2 which showed lower emissions under higher temperatures and pressures.




Performance and Emissions of a DI Diesel Engine Fueled by Different Biodiesel Blends


Book Description

Biodiesel has been a promising clean alternative fuel to fossil fuels, which reduces the emissions that are released by fossil fuels, and possibly reduces the energy crisis caused by the exhaustion of petroleum resources in the near future. Biodiesel is replacing diesel as an alternative fuel for internal combustion engines. Previous research studies have shown that biodiesel can greatly reduce carbon monoxide (CO), hydrocarbon (HC) and particulate matter (PM) emissions compared to diesel fuels, but very few studies have shown a reduction in total nitrogen oxides (NOx). At present, B20 (20% biodiesel in the total fuel mix) is being used commonly in the US due to its material compatibility to changing weather conditions, emission benefits and costs. Currently, Canada is planning to use 5% of biodiesel by 2015. The objective of this study is to test the feasibility of biodiesel in cold climates such as Canada. The biodiesel used is made of canola oil obtained from a local supermarket and winter diesel is used as a reference fuel. Three different series were used. The first series was biodiesel/diesel with six blends (B0, B5, B10, B20, B50 and B100). The second series was biodiesel/diesel plus 2% of a chemical additive (B0, B5A, B10A, B20A, B50A and B100A). The final was kerosene/biodiesel series (K0, K5, K10, K20, K50 and K100). Chemical additive (Wintron XC30) is used to lower the cloud point of the blends and this is the first attempt to investigate its effect on engine emissions. On the other hand, there are limited studies on kerosene being treated as a blending fuel, where it is mainly used to lower the cloud point of the blends to investigate the feasibility of biodiesel in a cold climate such as the winter season in Canada and suggest an appropriate solution for the future of biofuel. Engine performance and emission concentrations are investigated by determining the break specific fuel consumption (bsfc), fuel conversion efficiency and measuring emission concentrations of CO, HC, NO, NO2 and NOx using gas analysers. Engine tests are performed on a constant rated speed at three different load conditions. A comparison is made for the three series. Most of the blends have shown improved emissions compared to fossil diesel. B5A demonstrated a lower cloud point than fossil diesel, and the kerosene series showed excellent results at high load conditions.