Combustion Characteristics of Alternative Liquid Fuels


Book Description

Envisaged application of biodiesel in gas turbine engines or furnaces requires extensive tests on the deflagration properties of biodiesel. The laminar flame speeds of Palm Methyl Esters (PME) and blends of PME with conventional fuels are determined using the jet-wall stagnation flame configuration. The same technique is also used to measure the laminar flame speed of diesel, Jet-A1, n-heptane, acetone, methane and methane/acetone. The spray atomization characteristics of a plain-jet airblast atomizer are investigated using a phase Doppler anemometry (PDA) under non-reacting conditions. The droplet size and velocity distribution of biodiesels are compared to conventional fuels. For spray combustion investigations, a generic gas turbine-type combustor is developed to compare the spray flame established from PME, rapeseed methyl esters (RME), diesel, Jet-A1 and biodiesel blends. The spray droplet characteristics in the flame and the flow field in the combustor are investigated. Chemiluminescence imaging of OH* and CH* are applied to capture the global flame structure and heat release region. Flame spectroscopy and long bandpass filtered imaging at > 550 nm are performed to evaluate the tendency of soot formation. In general, biodiesels exhibit flame shapes and spray droplet characteristics that are comparable to conventional fuels. In spite of the higher fuel specific consumption, the emission of NOx is found to be lower for biodiesels compared to conventional fuels. The results show that biodiesels can potentially be used as alternative fuels for gas turbine operation.




Experimental Investigation of Physical Combustion Characteristics for Alternative Liquid Fuels


Book Description

The development of alternative liquid fuels has shifted from fuels such as ethanol and biodiesel, which are often created from food sources, to more advanced feedstocks, such as Algae, and synthetic fuels, such as Fischer-Tropsch diesel and other "renewable" fuels. This study was designed to characterize the physical combustion performance of ethanol, biodiesel, and an algae-derived "Hydrotreated Renewable Diesel." The physical properties of the fuels were characterized in order to describe the atomization behavior. In addition, Gas Chromatography/Mass Spectrometry provided insight into the chemical composition of each fuel. A swirl-stabilized research combustor was used to conduct experiments to simulate gas turbine combustion, and emissions and lean stability limits were measured. At cold-flow conditions, ensemble laser diffraction provided measurements of atomization characteristics, and high-speed cinematography provided additional insight. Most of the fuels had similar atomization characteristics, despite having a wide range of physical properties, which is attributed to the atomization strategy used in this work. However, biodiesel did exhibit larger droplets (5 microns larger on average), indicating that viscosity does have some effect on prompt atomization. Due to the nature of its production, the Hydrotreated Renewable Diesel performed similar to the conventional petroleum fuels, suggesting a high degree of interchangeability with conventional fuels. Ethanol, with the highest oxygen content, and the lowest heating value produced the lowest NOx emissions. Among the fuels examined, differences in emissions were attributed to differences in the evaporation and chemical behavior; with alternative fuels showing benefit over the conventional fuel.




Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines


Book Description

This book covers alternative fuels and their utilization strategies in internal combustion engines. The main objective of this book is to provide a comprehensive overview of the recent advances in the production and utilization aspects of different types of liquid and gaseous alternative fuels. In the last few years, methanol and DME have gained significant attention of the energy sector, because of their capability to be utilized in different types of engines. This book will be a valuable resource for researchers and practicing engineers alike.




Alternative Fuels Guidebook


Book Description

This book presents the fundamentals needed to understand the physical and chemical properties of alternative fuels, and how they impact refueling system design and the modification of existing garages for safety. It covers a wide range of fuels including alcohols, gases, and vegetable oils. Chapters cover: Alternative Fuels and Their Origins Properties and Specifications Materials Compatibility Storage and Dispensing Refueling Facility Installation and Garage Facility Modifications and more




Alternative Fuels


Book Description

Written primarily for fleet management personnel with purchasing, maintenance, or operations responsibilities, Alternative Fuels: Emissions, Economics, and Performance provides essential information for those who are considering adding alternatively-fueled vehicles to their fleets. Readers will gain a solid understanding of the fundamentals of alternative fuels and the factors that need to be considered when evaluating their use. No prior knowledge of alternative fuels is necessary. Basic information on the various alternative fuels and objective data on the costs of converting, fueling, and operating alternatively-fueled vehicles is covered in this book. Fuel cost, performance, reliability, and availability are addressed. The book also discusses the 1990 amendments to the Clean Air Act and the 1992 Comprehensive National Energy Policy Act. A summary of Texas' state law, considered to be representative of state legislation on alternative fuels and a glossary of key terms, are also included. Eight chapters cover: Review of Engine Technology; Characteristics of Alternative Fuels; Conversion of Spark Ignition Engines; Conversion of Compression Ignition Engines; Refueling Facilities; Legislation and Policies; and Cost Considerations. The book is also an ideal introduction to the topic for legislators, administrators, educators, and anyone interested in learning more about alternate fuels.




Alternative Liquid Fuels


Book Description




Alternative Transportation Fuels


Book Description

A continuous rise in the consumption of gasoline, diesel, and other petroleum-based fuels will eventually deplete reserves and deteriorate the environment, Alternative Transportation Fuels: Utilisation in Combustion Engines explores the feasibility of using alternative fuels that could pave the way for the sustained operation of the transport secto




Alternative Fuels for Transportation


Book Description

Exploring how to counteract the world's energy insecurity and environmental pollution, this volume covers the production methods, properties, storage, engine tests, system modification, transportation and distribution, economics, safety aspects, applications, and material compatibility of alternative fuels. The esteemed editor highlights the importance of moving toward alternative fuels and the problems and environmental impact of depending on petroleum products. Each self-contained chapter focuses on a particular fuel source, including vegetable oils, biodiesel, methanol, ethanol, dimethyl ether, liquefied petroleum gas, natural gas, hydrogen, electric, fuel cells, and fuel from nonfood crops.




Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines


Book Description

This monograph covers different aspects related to utilization of alternative fuels in internal combustion (IC) engines with a focus on biodiesel, dimethyl ether, alcohols, biogas, etc. The focal point of this book is to present engine combustion, performance and emission characteristics of IC engines fueled by these alternative fuels. A section of this book also covers the potential strategies of utilization of these alternative fuels in an energy efficient manner to reduce the harmful pollutants emitted from IC engines. It presents the comparative analysis of different alternative fuels in a variety of engines to show the appropriate alternative fuel for specific types of engines. This book will prove useful for both researchers as well as energy experts and policy makers.